
0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E 	 January/February 2014 | IEEE Software � 69

Decision-Centric
Architecture
Reviews
Uwe van Heesch, Capgemini Germany

Veli-Pekka Eloranta, Tampere University of Technology

Paris Avgeriou, University of Groningen

Kai Koskimies, Tampere University of Technology

Neil Harrison, Utah Valley University

// Architecture evaluation is an important activity in

the software engineering life cycle, but unfortunately,

it isn’t regularly practiced in industry. Decision-centric

architecture reviews uncover and evaluate the rationale

behind the most important architecture decisions.

Experiences in large industrial projects have shown

that full-scale DCAR evaluations, including reporting,

can be conducted in fewer than five person-days while

still producing satisfying results for stakeholders. //

Software architecture that’s
poorly designed or carelessly cobbled
together can make an entire software
project fail. Therefore, it’s important
to evaluate software architecture

early on in its development. Research-
ers have proposed various software
architecture evaluation methods to
systematically uncover architectural
problems;1,2 the most popular are

scenario-based—for example, the Ar-
chitecture Tradeoff Analysis Method
(ATAM).3 In general, architecture
evaluations have several benefits,
but the most important is to identify
problems or risks early enough so
that they can be more easily fixed or
mitigated than problems found later,
such as in the testing or integration
phases, or even during maintenance.4
Furthermore, architecture evaluations
encourage communication among the
involved stakeholders that wouldn’t
take place otherwise.

But despite these benefits, archi-
tecture evaluation isn’t widely ad-
opted in industry today;1,2 most or-
ganizations are aware of its benefits,
but very few practice it. A study of
software architects uncovered the
typical prerequisites that influence
an organization’s architecture evalu-
ation practices, such as management
commitment, company-wide evalu-
ation standards, funding models,
and appropriate training, but that
aren’t often met.5 Furthermore, the
increasingly popular agile develop-
ment approaches don’t encourage
the use of architecture evaluation
methods because they typically con-
sume a considerable amount of time
and resources.

To lower the threshold of indus-
trial adoption, we developed a new
evaluation method called decision-
centric architecture review. We built
DCAR from the ground up based
on our experiences with performing
architecture evaluations in industry
and observing what works well in
practice. This led to two high-level
requirements: first, DCAR had to be
lightweight in terms of required time
and resources, and second, it had to
support a decision-by-decision soft-
ware architecture evaluation, letting
its users systematically analyze and

FOCUS: New Perspectives on Software Quality

FOCUS: New Perspectives on Software quality

70	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

record the rationale behind archi-
tecture decisions. The latter require-
ment differentiates the method from
scenario-based methods, which test
software architectures against sce-
narios that refine a system’s major
quality requirements.

We’ve performed multiple DCAR
evaluations so far, and our expe-
riences indicate that an average
DCAR session takes a half-day, re-
quiring the presence of three to five
members of the project team, in-
cluding the chief architect. Thus,
the total amount of company time is
less than three person-days plus an-
other two person-days for the review
team, which makes DCAR espe-
cially suitable for projects that don’t
have the budget, schedule, or stake-
holders available for full-fledged ar-
chitectural evaluations. DCAR is
also pertinent for projects that need
an evaluation to justify a set of ar-
chitecture decisions rather than to
ensure that a whole system satisfies
its quality requirements.

Architecture Decisions
DCAR is decision-centric in the
sense that the evaluation starts
when stakeholders (with the re-
view team’s assistance) select a set
of decisions to analyze in the con-
text of relevant project- and com-
pany-specific decision forces. A
decision force, or force for short,
is any nontrivial influence on an ar-
chitect seeking a solution to an ar-
chitectural problem (see the sidebar
for more background). DCAR can
be used for any set of architectural
decisions of any type: it’s applicable
for all types of software-intensive
systems and domains. Understand-
ing architecture decisions and the
rationale behind them is crucial
for continuously ensuring system
integrity.

Architecture decisions are the
fundamental choices an architect has
to make about a software system’s
overall structure or externally visible
properties.6 Typical examples include
the choice of an architectural pattern

or style, the selection of a middle-
ware framework, or the decision not
to use open source components for li-
censing considerations.

Architecture decisions aren’t
isolated; they can be seen as a web
of interrelated decisions that de-
pend on, support, or contradict
each other. Some decisions must
be combined to achieve a desired
property—others are solely made
to compensate for a negative im-
pact. As an example, an architect
could decide to use an in-memory
database to achieve short response
times, but this decision has a nega-
tive impact on reliability, which,
in addition to short response
times, is another desired property
of the system. To compensate for
this negative impact, the archi-
tect could decide to use redundant
power supplies or to replicate the
database and the hardware and
use the replica as a hot spare. The
decisions to use redundant power
supply and a hot spare would then
be caused by the decision to use an
in-memory database.

In DCAR, the participants iden-
tify the architecture decisions and
clarify their interrelationships.
This is primarily done for two rea-
sons: first, understanding the rela-
tionships helps identify influential
decisions that have wide-ranging
consequences for large parts of the
architecture, and second, when a
specific decision is evaluated, it’s
important to consider its related
decisions as well.

Several factors must be taken
into consideration to evaluate an
architecture decision, including
constraints, risks, political or or-
ganizational considerations, per-
sonal preferences, experience, and
business goals such as quick time
to market and low price. These

DCAR: Short Profile
Evaluation objectives: determine the soundness of architectural decisions that

were made
Inputs for evaluation: informal description of requirements, business drivers,

and architectural design
Knowledge of evaluators: general knowledge about software architecture
Output: risks, issues, and thorough documentation of the evaluated decisions

and their decision forces
Priority setting of decisions: during the review
Project phase: within or after the architectural design is finalized
Reviewers: company-internal or external reviewers
Schedule: half a day preparation and postprocessing and half a day review

session
Scope: a set of specific architecture decisions
Social interaction: face-to-face meeting between reviewers, architect,

developers, and business representative
Tools or automation: templates, wiki, and UML tool

	 January/February 2014 | IEEE Software � 71

Lo
w

 re
lia

bi
lit

y

Pros Cons

Im
pr

ov
ed

 re
sp

on
se

 ti
m

e

Co
st

 fo
r r

ed
un

da
nt

 p
ow

er

Ex
pe

rie
nc

e
w

ith
 in

-m
em

or
y

da
ta

ba
se

s

Figure 1. Decision forces have

different weights and may contradict each

other. Here we see some forces for the

in-memory database decision.

decision forces7 each have a direc-
tion and a magnitude, pushing an
architect either toward or away
from a specific solution.

To evaluate an architectural so-
lution, the related decisions also
must be contemplated and consid-
ered as decision forces. In their to-
tality, these forces reveal the entire
context in which a decision is made.
Because some of them can be in con-
flict with—or orthogonal to—each
other, an architect must balance all
the forces to make the best possible
decision. Figure 1 illustrates this
concept using the in-memory data-
base decision described earlier. In
this particular case, the forces in fa-
vor of the in-memory database out-
weigh the forces against it. DCAR
explores the entire rationale behind
decisions via the related forces.

After identifying forces, the re-
view participants examine if the ra-
tionale behind the evaluated decision
is still valid in the current context.
This is important, because forces are
not immutable; not only do require-
ments keep changing, but the tacti-
cal orientation of the company may
evolve, laws and regulations may
have changed, or new technologies
could exist that would offer a better
solution to a design problem at hand.
Such changes in the design context
may change the magnitude of the
forces, or even introduce new forces
and make some of the old forces ob-
solete. In the new design context, if
the negative forces outweigh the pos-
itive forces, then the reviewers rec-
ommend to reconsider the decision.

Introducing DCAR
To achieve best results, DCAR re-
quires the participation of the lead
architect and one or two members
from the development team with
different roles and responsibilities.

Additionally, somebody has to rep-
resent the management and cus-
tomer perspectives. This is impor-
tant because some decisions must
be assessed from an enterprise-
wide perspective rather than taking
only the project-specific forces into
account.

The review can be done by ex-
ternal reviewers or an organiza-
tion’s own staff members who
aren’t directly involved in the proj-
ect under review. However, the re-
view team’s members must have
experience in designing software
architecture, ideally (but not neces-
sarily) in the same domain as the
system under review.

Figure 2 shows DCAR’s main
steps, as well as the produced ar-
tifacts (the boxes on the right).
Step 1 happens offline, but all the
other steps are performed during
an evaluation session in which all
participants gather in one room.

Step 1: Preparation
A date for the DCAR session is set-
tled, and the stakeholders are in-
vited to participate. The system’s
lead architect prepares a presenta-
tion that should contain the most
important architectural require-
ments, high-level views of the ar-
chitecture, the approaches used
(such as patterns or styles), and the
technologies used (such as database
management systems or middleware
servers). The representative for the
management and customer perspec-
tives prepares a presentation describ-
ing the software product and its
domain, the business environment,
market differentiators, and driv-
ing business requirements and con-
straints. Templates for both presen-
tations can be found at www.dcar
-evaluation.com.

The review team receives the

presentation slides prior to the eval-
uation session, so that they can pre-
pare for the meeting. In particular,
the reviewers study the material to
elicit potential architecture decisions
and decision forces. Additional sys-
tem documentation isn’t mandatory,
but anything that the reviewers can
use to understand the system up-
front is helpful.

Step 2: Introduction to DCAR
The evaluation session starts with
an introductory presentation of the
DCAR method to all participants.
This includes the day’s schedule, an
introduction to the DCAR steps,
the evaluation’s scope, possible out-
comes, and participant roles and re-
sponsibilities. The DCAR website
provides an example.

Step 3: Management Presentation
The management/customer repre-
sentative gives a short presentation

FOCUS: New Perspectives on Software quality

72	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

using the slides prepared in Step 1.
In our experience, 15 to 20 min-
utes should suffice, but more time
can be used if the schedule allows
it. The main purpose is to let the
reviewers elicit business-related
decision forces that must be taken
into consideration during the eval-
uation. The review team notes any
potential forces during the presen-
tations and asks questions to elicit
additional ones. The management/

customer representative doesn’t
need to be present during the rest
of the session, but he or she might
provide additional insights during
the decision analysis.

Step 4: Architecture Presentation
The lead architect uses the slides
prepared in Step 1 to introduce the
architecture to all DCAR partici-
pants. In our own industrial DCAR
sessions, we reserved between 45

and 60 minutes for this presenta-
tion. The goal is to give all partici-
pants a good mental picture of the
architecture, and the presentation
is supposed to be highly interac-
tive. The review team and the other
participants ask questions to com-
plete and verify their understanding
of the system. During this step, the
reviewers revise and complete the
list of architecture decisions they
identified as preparation in Step 1.
Identifying architecture decisions
requires some experience. As a start-
ing point, reviewers can focus on the
technologies used, such as servers,
frameworks, and third-party librar-
ies. Additionally, it has been a good
practice to search for applied pat-
terns in the architecture.8

Apart from capturing architec-
ture decisions, the reviewers re-
vise and complete the list of forces
they identified in Steps 1 and 2.
Forces can be documented as infor-
mal statements; both decisions and
forces are revisited in the next step.

Step 5: Forces and Decision
Completion
At this stage, the reviewers have as-
sembled a preliminary list of archi-
tecture decisions and decision forces,
so Step 5’s goal is twofold: clarify the
architecture decisions and their rela-
tionships, and complete and verify
the forces relevant to these decisions.
To support the clarification of deci-
sion relationships, one of the review-
ers creates a decisions relationship
diagram9 that is constantly revised
during the previous steps. Figure 3
shows an excerpt of such a diagram.

Each decision is represented by
an ellipse that contains a short de-
scriptive name for the decision. It’s
important to use the company’s own
vocabulary for these names, so that
reviewers and stakeholders have the

Step 1: Preparation

Step 2: DCAR Introduction

Step 3: Management presentation

Step 4: Architecture presentation

Step 5: Forces and decision completion

Step 6: Decision prioritization

Step 7: Decision documentation

Step 8: Decision evaluation

Step 9: Retrospective and reporting

Architecture presentation
Management presentation

Potential decision forces

Potential decision forces
Potential design decisions

Veri�ed decision forces
Veri�ed design decisions

Prioritized decisions

Documentation of most
important decisions

Potential risks and issues
Revised decisions documentation

Decision (non-) approval

Review report

Figure 2. The decision-centric architecture review. DCAR has nine sequential steps,

each one producing different artifacts.

	 January/February 2014 | IEEE Software � 73

same understanding of the applied
architectural solution. In the begin-
ning, each decision collected by the
reviewers in the previous step is rep-
resented in the diagram. After all
the participants gain a collective un-
derstanding of the decisions, the re-
lationships are established through
a directed line in the diagram. Al-
though multiple relationship types
exist,9 the only important relation-
ships in an architecture review are
caused by and depends on. These
relationships help both reviewers
and stakeholders estimate each de-
cision’s importance. Relationships
are also helpful for understanding
which decisions must be taken into
consideration as decision forces
for other decisions. Any UML tool
can create a relationship diagram;
a template is available at www.
dcar-evaluation.com.

The forces, presented as a bul-
leted list, should be formulated un-
ambiguously using domain-specific
vocabulary—for example, forces
from the machine control domain
might be “Firmware-level design and
implementation should be sourced
out, as this isn’t our core business,”
or “We have a lot of in-house ex-
perience with the CANOpen pro-
tocol.” The review team discusses
and completes the list of forces with
the company participants.

Named-base communication

<<caused by>>

<<caused by>>

<<depends on>> <<depends on>>

<<depends on>>
<<caused by>>

Connection solver Name server

Microkernel

Type libraryIndirection for address space

Support multiple
operating systems

Figure 3. The relationship view illustrates decisions and their relationships. In

this example, we’re looking at an excerpt from a relationship view created in a DCAR

session.

Name Redundancy of controllers

Problem The application should run even if the server fails

Solution or
description
of decision

The system is deployed to two servers: one is active, the other one is inactive.
The active server provides all system services, while the passive one is running
in the background. When the active server fails, the inactive server becomes
active. During the switch over, the active server tries to update the passive one to
make sure that it has the same data and status. Both servers have an identical
software con�guration. This solution follows the Redundant Functionality Pattern.

Considered
alternative
solutions

Apply the Redundancy Switch Pattern: Both servers are active; external logic is
used to decide which output is actually used in the control. In this case, cyclic
data copying could be avoided. However, applying this solution would require
major modi�cations to the system. Even though availability would be increased,
it would also cause additional costs. The customers are not prepared for paying
more for higher availability. Additionally, the external logic component could
become a potential single point of failure. Therefore, this alternative was discarded.

Forces in
favor of
decision

• Easier to implement than the alternative solution
• Scales easily to versions where redundancy is not used
• No additional costs

Forces
against the
decision

• Slower switch over time than the alternative would have
• Hard to offer higher availability than the current 99.99%

Outcome Green Yellow Yellow Red

Rationale
for outcome

Current
solution
seems to be
ok.

I am concerned
about the slow
switch over time.

Widely accepted
solution. Availability
might become a
problem in the
future.

We should really reconsider
this decision, as the next
release is likely to have
higher availability
requirements.

Figure 4. During DCAR, decisions are

documented and continuously updated. In

the end, the descriptions capture the full

rationale behind decisions including the

outcome of the evaluation.

FOCUS: New Perspectives on Software quality

74	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

Ta
b

l
e

 1 Descriptive statistics.

Variable Value

Average system size 600,000 SLOC

Average number of elicited decisions after step 5 21 decisions

Average number of decisions evaluated in step 7 9 decisions

Average number of decisions evaluated in step 8 7 decisions

Average number or reviewers 4 people

Average number of company stakeholders 4 people

Average effort for reviewer team 50 person-hours

Average effort for company stakeholders 23 person-hours

Step 6: Decision Prioritization
Usually, the number of decisions
elicited in the previous steps is too
large to discuss during the review it-
self, so the stakeholders will have to
negotiate which decisions to review
in the following steps. The criteria
for selecting which decisions will be
reviewed are context dependent but
should include mission-critical deci-
sions, decisions known to bear risks,
and decisions causing high costs.

We use the following procedure to
prioritize decisions. Each participant
gets 100 points to distribute freely
over the decisions identified at this
point, based on the previously agreed
criteria about their importance. Then
the points are summed up and the ra-
tionale behind each person’s rating
is discussed. The decisions with the
highest ratings (number of points re-
ceived) go on to the next steps. In our
experience, the number of decisions
that can be discussed effectively in a
half day is seven to ten.

Step 7: Decision Documentation
The architect and the other com-
pany participants document the set
of decisions that received the high-
est ratings in the previous step, and

each person selects two or three de-
cisions that he or she is knowledge-
able about. The decisions are docu-
mented by describing the applied
architectural solution, the problem
or issue it solves, known alternative
solutions, and the forces that must
be considered to evaluate the deci-
sion. The stakeholders use the list
of forces assembled in the previous
steps to make sure they don’t forget
important ones, but they can also
think of new forces.

Figure 4 shows an example deci-
sion documentation template used in
DCAR; other established templates
appear elsewhere.6,8

Step 8: Decision Evaluation
The next step after documenting
the decisions is to evaluate them,
starting with the highest-priority
decision. The participant who doc-
umented the current decision pres-
ents it briefly, and then the company
participants, together with the re-
viewers, challenge the decision by
identifying additional forces against
the chosen solution. They use the
elicited decision forces and the deci-
sion relationship diagram to under-
stand the decision’s context—that

is, the circumstances in terms that
the decision can be fully understood
and assessed. The documentation
of both decisions and decision re-
lationship diagrams are continu-
ously updated by one of the review-
ers during this step. All participants
discuss whether the forces in favor
of the decision outweigh the forces
against it.

Finally, all participants decide by
voting whether the decision is good,
acceptable, or has to be reconsidered.
Figure 4 shows the result of an evalu-
ated decision created during a DCAR
session. The traffic light colors indi-
cate the ratings of all participants:
green for good, yellow for acceptable,
and red for has to be reconsidered.
Additionally, it shows justifications
for the votes as given by each voter
(“rationale for outcome”).

During the whole discussion, the
reviewers note any potential issues
or risks that were mentioned. Each
decision is discussed for approxi-
mately 15 to 20 minutes. In our ex-
perience, the quality of discussion
diminishes at some point. If a deci-
sion requires more than 20 minutes,
it can be flagged as a point for future
analysis.

	 January/February 2014 | IEEE Software � 75

Step 9: Retrospectives and Reporting
After all of the selected decisions are
evaluated, the review team collects
the notes and artifacts created dur-
ing the session. These will serve as
input for the evaluation report that
the review team writes within two
weeks of the session. The report is
discussed with the architect for ver-
ification and eventually refined by
the review team. In our own DCAR
sessions, the review team prepares
the report the following day, the ad-
vantage being that the review team
and the architect can still vividly re-
member the discussions held the day
before.

Experiences
We developed DCAR in cooperation
with industrial partners from the
distributed control system domain,
but it is by no means restricted to
this domain. Since its initial version,
DCAR has been applied and refined
in five large software projects. In this
section, we report our findings from
three industrial sessions conducted
in different projects at Metso Auto-
mation in Tampere, Finland.

Table 1 gives some descrip-
tive statistics for these sessions,
which happened over the span of
five hours each. The systems under
study came from the process auto-
mation domain, and the effort that
company stakeholders had to ex-
pend on the reviews reveals the time
spent by the participants for prepa-
ration, taking part in the evaluation
sessions, and reviewing the evalua-
tion report.

To gather feedback on the par-
ticipants’ perception of DCAR, we
interviewed a subset of them, in-
cluding the chief architect. Apart
from the chief architect, who natu-
rally knows the architecture best,
all interviewees mentioned that they

received a good overview of the sys-
tem’s architecture, something they
were missing in their daily work
because they were only responsible
for smaller subsystems. They also
stated that they liked that all im-
portant decisions, even if they were
considered stable, were brought into
question for the purpose of the eval-
uation. The prioritization proce-
dure in Step 6 made sure that bias
on behalf of a decision maker or the
responsible architect was reduced.
Systematically discussing decisions
in a group also helped everyone un-
derstand different points of view
that need to be considered in the de-
cision’s context.

Generally, the participants re-
ported that interactions between the
stakeholders and discussions with
the review team as external contrib-
utors were the most valuable advan-
tages of the evaluation session. The
chief architect noted that the evalua-
tion report, produced by the review
team, was a valuable supplement to
the existing system documentation.
The interviewees estimated that the
decisions elicited during the evalu-
ation roughly covered the most im-

portant 75 percent of all significant
architecture decisions; this was re-
garded as an excellent result given
the short amount of time invested in
the evaluation.

DCAR’s success depends on
stakeholders’ understanding about
architecture decisions and decision
forces, so we explicitly addressed

these issues in the interviews. Al-
though all interviewees were either
already familiar with both terms
or grasped the concepts quickly
during the DCAR introduction in
Step 2, some of them mentioned
that the time given for the docu-
mentation of decisions in Step 7
was too short. This was particu-
larly the case for stakeholders who
had never systematically docu-
mented architecture decisions be-
fore. They proposed to tackle this
problem by providing examples of
documented decisions prior to the
evaluation.

During the evaluations, we ob-
served that the documentation of
reasoning—the forces in favor or
against a specific solution—was es-
pecially challenging for some of the
participants. Therefore, in later eval-
uations, we provided examples with
a list of typical decision forces in the
domain at hand and alleviated the
problem.

T hese positive experiences
and the continuous interest
from other industrial part-

ners to hold more evaluations in the
future show that DCAR helps orga-
nizations adopt architectural evalu-
ations as part of their best practices.
We’ll conduct additional empirical
studies to provide evidence about
how far DCAR does lower the
threshold for industrial adoption of
architecture evaluations.

All participants decide by voting
whether the decision is good, acceptable,

or has to be reconsidered.

FOCUS: New Perspectives on Software quality

76	 IEEE Software | w w w.computer.org/soft ware | @ieeesoft ware

Acknowledgments
We thank the architects and developers at
Metso Automation in Tampere, Finland.
This work was partly funded by the Finn-
ish Funding Agency for Technology and
Innovation (project Sulava).

References
	 1.	 L. Dobrica and E. Niemela, “A Survey on

Software Architecture Analysis Methods,”
IEEE Trans. Software Eng., vol. 28, no. 7,
2002, pp. 638–653.

	 2.	 L. Bass and R. Nord, “Understanding the
Context of Architecture Evaluation Meth-
ods,” Proc. Joint 10th Working IEEE/
IFIP Conf. Software Architecture and 6th
European Conf. Software Architecture,
IEEE, 2012, pp. 277–281.

	 3.	 R. Kazman, M. Klein, and P. Clements,
“ATAM: Method for Architecture Evalu-
ation,” tech. report, Software Eng. Inst.,
Carnegie Mellon Univ., 2000; www.sei.
cmu.edu/publications/documents/00.
reports/00tr004.html.

	 4.	 J. Maranzano et al., “Architecture
Reviews: Practice and Experience,” IEEE
Software, vol. 22, no. 2, 2005, pp. 34–43.

	 5.	 M. Babar, L. Bass, and I. Gorton, “Fac-
tors Influencing Industrial Practices of
Software Architecture Evaluation: An
Empirical Investigation,” Proc. Quality
of Software Architectures 3rd Int’l Conf.
Software Architectures, Components, and
Applications, Springer, 2007, pp. 90–107.

	 6.	 J. Tyree and A. Akerman, “Architecture
Decisions: Demystifying Architecture,”
IEEE Software, vol. 22, no. 2, 2005, pp.
19–27.

	 7.	 U. van Heesch, P. Avgeriou, and R. Hill-
iard, “Forces on Architecture Decisions:
A Viewpoint,” Proc. Joint 10th Working
IEEE/IFIP Conf. Software Architecture
and 6th European Conf. Software Archi-
tecture, IEEE, 2012, pp. 101–110.

	 8.	 N. Harrison and P. Avgeriou, “Pattern-
Based Architecture Reviews,” IEEE
Software, vol. 28, no. 6, 2010, pp. 66–71.

	 9.	 U. van Heesch, P. Avgeriou, and R.
Hilliard, “A Documentation Framework
for Architecture Decisions” J. Systems
and Software, vol. 85, no. 4, 2012, pp.
795–820.

Uwe van Heesch is a software architect and project
manager at Capgemini Germany. His research interests include
software architecture, particularly architecture decision
modeling, software architectural knowledge management, and
architecture evaluation. Van Heesch received a PhD in math-
ematics and natural sciences from the University of Groningen,
the Netherlands. He’s an active member of the European pattern
community. Contact him at uwe@vanheesch.net.

Veli-Pekka Eloranta is a researcher in the Department
of Pervasive Computing at Tampere University of Technology.
His research focuses on software architectures, architecture
work practices, agile methods, architecture evaluations, design
patterns, and pattern languages. Eloranta is active in the pat-
tern community and has served on program committees for
several Pattern Languages of Programs (PLoP) conferences.
Contact him at veli-pekka.elaoranta@tut.fi.

Paris Avgeriou is a professor of software engineering in
the Department of Mathematics and Computing Science at the
University of Groningen, the Netherlands, where he has led the
software engineering research group since September 2006.
His research interests lie in the area of software architecture,
with strong emphasis on architecture modeling, knowledge,
evolution, and patterns. Avgeriou serves on the editorial board
of Springer Transactions on Pattern Languages of Programming,
and he has edited special issues of IEEE Software, Elsevier
Journal of Systems and Software, and Springer Transactions
on Pattern Languages of Programming. Contact him at paris@
cs.rug.nl.

Kai Koskimies is a professor of software engineering in
the Department of Pervasive Computing at Tampere University
of Technology. He has headed the Finnish Graduate School on
Software Systems and Engineering and leads ongoing research
related to software architectures, with special focus on pat-
terns, evaluation, and automated design. Contact him at kai.
koskimies@tut.fi.

Neil Harrison is an associate professor of computer sci-
ence at Utah Valley University in Orem, Utah. He’s the author
of numerous publications on software architecture, software
patterns, effective organizations, agile software development,
and software testing. Harrison received a PhD in mathemat-
ics and natural sciences from the University of Groningen,
the Netherlands. He’s a member of ACM. Contact him at neil.
harrison@uvu.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

