
Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

The Journal of Systems and Software xxx (2011) xxx–xxx

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j our na l ho mepage: www.elsev ier .com/ locate / j ss

A documentation framework for architecture decisions

U. van Heescha,b,∗, P. Avgerioua, R. Hilliardc

a University of Groningen, Groningen, The Netherlands
b Fontys University of Applied Sciences, Venlo, The Netherlands
c Consulting Software Systems Architect, Massachusetts, USA

a r t i c l e i n f o

Article history:
Received 1 May 2011
Received in revised form 15 October 2011
Accepted 17 October 2011
Available online xxx

Keywords:
Software architecture
Architecture decisions
Architecture knowledge management
Architectural viewpoints
Case study
Architecture framework

a b s t r a c t

In this paper, we introduce a documentation framework for architecture decisions. This framework
consists of four viewpoint definitions using the conventions of ISO/IEC/IEEE 42010, the new interna-
tional standard for the description of system and software architectures. The four viewpoints, a Decision
Detail viewpoint, a Decision Relationship viewpoint, a Decision Chronology viewpoint, and a Decision
Stakeholder Involvement viewpoint satisfy several stakeholder concerns related to architecture decision
management.

With the exception of the Decision Stakeholder Involvement viewpoint, the framework was evaluated
in an industrial case study. The results are promising, as they show that decision views can be created
with reasonable effort while satisfying many of the stakeholder concerns in decision documentation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

With the growing complexity and size of software-intensive
systems, software architecture has become increasingly important.
While architecture is traditionally understood as the design of the
system itself, manifested mainly in design elements and their form,
Perry and Wolf recognized the importance of (design-)rationale as
an integral part of the software architecture. They defined software
architecture as follows:

Software Architecture = {Elements, Forms, Rationale} (Perry and
Wolf, 1992)

Kruchten adopted this definition of software architecture as a start-
ing point for the 4+1 View Model framework (Kruchten, 1995). In
this framework, each of the five views addresses various system
concerns and determines the organization of a set of architectural
elements, the forms and patterns used, and the rationale behind
those architectural choices. This concept of documenting software
architecture as a set of views that correspond to viewpoint (VP) def-
initions and address system concerns was adopted and generalized
in IEEE Std 1471:2000 (IEEE, 2000), and further elaborated by the
architecture community (e.g., Clements et al., 2002; Rozanski and
Woods, 2005). However, as in Kruchten’s 4+1, the importance of

∗ Corresponding author at: University of Groningen, Groningen, The Netherlands.
E-mail addresses: uwe@vanheesch.net, u.vanheesch@fontys.nl (U. van Heesch),

paris@cs.rug.nl (P. Avgeriou), r.hilliard@computer.org (R. Hilliard).

documenting decisions and their rationale along with the selected
architectural concepts was only mentioned, but little guidance was
offered on how to document decisions.

Bosch emphasized the importance of documenting architecture
as a set of architecture decisions (ADs) (Bosch, 2004). In contrast to
the aforementioned approaches, design decisions as an explicit part
of the software architecture description provide insight into the
reasoning process and record the rationale behind design decisions.
The concept of architecture decisions has been incorporated into
ISO/IEC/IEEE 42010, (ISO, 2011), which is the international revision
of IEEE Std 1471:2000 (IEEE, 2000).

Today, the perspective of looking at software architecture in
terms of a set of architecture decisions is widely recognized.
Authors have proposed templates for the information content
that is important to capture about decisions (e.g., Jansen and
Bosch, 2005; Tyree and Akerman, 2005), and various models and
tools to capture and manage architecture decisions have been
proposed (Tang et al., 2010). Several approaches incorporate the
documentation of architecture decisions in architecture practice
and subsequently capture and organize architecture decisions to
address various concerns, such as traceability and architectural
conformance (Babar et al., 2009).

There are currently three main approaches to documenting
architecture decisions: decision templates, decision models, and
annotations. We argue that all three approaches satisfy some
decision-related concerns, but none of them succeeds in satisfying
all concerns. Shortcomings of architecture decision documenta-
tion approaches are not surprising: as with traditional architecture

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.10.017

dx.doi.org/10.1016/j.jss.2011.10.017
dx.doi.org/10.1016/j.jss.2011.10.017
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:uwe@vanheesch.net
mailto:u.vanheesch@fontys.nl
mailto:paris@cs.rug.nl
mailto:r.hilliard@computer.org
dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

2 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

views, there is not a single way of documenting architecture deci-
sions that frames all concerns of all stakeholders in an adequate
and useful manner. We propose that multiple dedicated viewpoints
should be defined that focus on framing specific decision-related
concerns.

In this paper, we propose a documentation framework consist-
ing of four viewpoints for architecture decisions: a Decision Detail
viewpoint, a Decision Relationship viewpoint, a Decision Chronol-
ogy viewpoint and a Decision Stakeholder Involvement viewpoint.
Each viewpoint is dedicated to framing specific decision-related
concerns. At the same time, each viewpoint is integrated with the
other viewpoints through a common metamodel to offer a more
complete picture of decisions and their rationale. The framework
proposed here is useful “out of the box”, but it can also serve as
a basis for customization or extension by adding new decision-
related viewpoints. One extension of the framework currently
being investigated adds a viewpoint dedicated to decision-making
forces (see Section 6). This viewpoint also builds upon the cur-
rent framework metamodel. Apart from the Decision Stakeholder
Involvement viewpoint, all viewpoints were validated in an indus-
trial case study with very promising results.

The rest of this paper is organized as follows. Section 2 presents
decision-related concerns. In Section 3, we briefly outline the
proposed viewpoints including an example view for each of the
viewpoints.1 In Section 4, we report on an industrial case study,
which was conducted to validate the viewpoints. Section 5 sum-
marizes related work. Section 6 presents our conclusions and ideas
for future work.

2. Concerns related to architecture decisions

Architecture decisions should be documented to complement
architectural design with rationale. Yet, how to capture decisions is
still subject to discussion. This is mainly because there is no consen-
sus on which stakeholder concerns must be addressed by a decision
documentation approach. A concern, as used here, is any interest
in a system on the part of its stakeholders. Each concern poses a
question or issue that the architecture description, in this case the
architecture decision documentation, should be able to answer.

In recent years, many use cases for architectural knowledge
management have been published in the literature. We argue
that decisions are one type of architectural knowledge. Therefore,
we have analyzed three recent publications containing architec-
tural knowledge management (AKM) use cases (Liang et al., 2009;
Kruchten et al., 2006; Jansen et al., 2007) to identify and derive
concerns for architecture decision documentation. Table 1 shows
the resulting concerns.2 The concerns were functionally grouped
and, where possible, ordered according to the authors’ estimation of
their importance. The actual importance of the concerns, however,
often depends on the specific needs of the concrete stakeholder.

The analysis procedure, as well as a complete table with the ana-
lyzed use cases, the derived concerns, and the activities performed
to derive the respective concerns can be found in Appendix A.

Next, the authors assigned the concerns to typical stakehold-
ers. Table 2 shows the results. Most concerns were assigned to
architects and reviewers, because these stakeholders are frequently
using architecture documentation in their daily work. Note that the
assignment of the concerns took place based on typical tasks that
the stakeholders perform in software projects. It could be argued

1 The whole documentation framework in terms of a unified metamodel, the com-
plete viewpoint definitions, and the correspondences between those viewpoints are
specified in Appendix C.

2 A decision sub-graph, as used in concern C23, is a subset of a bigger set of
interrelated decisions.

Table 1
Concerns for architecture decision documentation.

Code Concern

C1 What decisions have been made?
C2 What is the current set of relevant decisions?
C3 What is the rationale for decision D?
C4 What concerns Ci does decision D address?
C5 What forces impacted/influenced each decision?
C6 What decisions affect concern C?
C7 What decisions have conflicting impacts on concern C?
C8 What decisions are required by decision D (including unmade

decisions)?
C9 What decisions conflict with decision D?
C10 What decisions are dependent on decision D?
C11 What decisions are related to decision D?
C12 What decisions influence decision D (or architecture element E)?
C13 What decisions are impacted by a change?
C14 What decisions would be impacted when integrating a set of

decisions S?
C15 How to apply a set of decisions from a different project in the

target architecture?
C16 Which stakeholders are affected by decision D?
C17 What decisions affect stakeholder S?
C18 Which stakeholders were involved in decision D?
C19 What decisions are influenced by stakeholder S?
C20 What is the ordering of decisions made?
C21 What decisions have changed since time T (or milestone M)?
C22 What decisions became obsolete after change CH?
C23 What decisions D or decision sub-graphs SG can be reused in other

projects?

that requirements engineers or managers for instance could also
be interested in dependencies between decisions or the impact of a
change in the architecture. However, we decided to limit ourselves
to the most characteristic concerns for the respective stakeholders.

The concerns were taken as a basis for the development of the
decision viewpoints, which will be introduced in the following
section. Each of the viewpoint definitions is driven by the typi-
cal stakeholders and concerns it frames. With the exception of the
concerns that were exclusively assigned to the Stakeholder Involve-
ment viewpoint (C16, C17, and C19), all concerns for the viewpoints
were validated as part of the case study presented in Section 4.

3. A framework for architecture decision documentation

An architecture framework is a set of practices for architecture
description used within a domain or community of stakeholders
(ISO, 2011). A framework typically consists of a set of viewpoints
for addressing recurring or typical concerns within that commu-
nity. Fig. 1 shows the metamodel for architecture frameworks from
ISO/IEC/IEEE 42010, (ISO, 2011).

In this paper, we present a documentation framework for
architecture decisions which uses the conventions of ISO/IEC/IEEE
42010. It comprises all elements defined in Fig. 1. The four
viewpoints of the framework were successively developed to
frame the concerns described in the previous section. Each of
the viewpoints is dedicated to concerns that are not or not

Table 2
Architecture decision concerns related to typical stakeholders.

Stakeholders Concerns

Architects C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13,
C14, C15, C16, C17, C18, C19, C20, C21, C22, C23

Reviewers C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12,
C16, C18, C20, C21

Managers C17, C18, C19
Customers C3, C6, C7
Requirements engineers C6, C7
New project members C3, C20
Domain experts C23

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 3

Fig. 1. Architecture framework (reproduced from ISO/IEC/IEEE 42010, ISO, 2011).

sufficiently framed by the previously created viewpoint. Starting
from the Decision Detail viewpoint, which mainly addresses con-
cerns related to the rationale behind decisions (C3–C6); we defined
the Decision Relationship viewpoint, which focusses on concerns
pertaining to relationships between decisions (C8–C15). The Deci-
sion Stakeholder Involvement viewpoint allows one to explicate
the relationships between stakeholders and decisions (C16–C19).
Finally, the Decision Chronological viewpoint was developed to sat-
isfy the remaining temporal concerns in decisions (C20–C22). Apart
from the key concerns mentioned here, each viewpoint addresses
additional concerns that will be described in the following subsec-
tions.

In the remainder of this section, we outline the four viewpoints
and show example views. A thorough definition of the framework
can be found in Appendix C.

3.1. Decision Detail viewpoint

Although textual decision descriptions have disadvantages as
mentioned in the introduction, they are certainly useful for grasp-
ing large parts of the rationale behind decisions. We propose
to complement the previously described viewpoints, which only
include partial information about the decisions, with a Decision
Detail viewpoint. Every viewpoint frames specific stakeholder con-
cerns, omitting information that is irrelevant for the respective
stakeholders or those specific concerns. While the other viewpoints
provide an overview over the decisions made and focus on the rela-
tionships between decisions, the Decision Detail viewpoint gives
detailed information about single decisions.

Currently, there is no commonly accepted template in the liter-
ature to describe architecture decisions, although many proposals
exist. Shahin et al. analyzed nine architecture decision models with
respect to similar description elements (Shahin et al., 2009). They
distinguish between major (e.g., decision outcome, related require-
ments, design options, arguments) and minor description elements
(e.g., issue, decision group, state, related decisions, related arti-
facts, consequences and stakeholders). We decided to create our
own template that contains all major elements plus selected minor
elements that turned out to be useful in three pilot studies we
conducted to test the decision viewpoints. The resulting set of
description elements is:

• Name: A short name of the decision that serves as a key in the
other views.

• Current state: The current state of the decision. Please refer to
Fig. C.3 for a list of all possible decision states.

• Decision groups: A decision can be associated to one or more
groups, which share specific characteristics. Decisions could for
instance be grouped by subsystem, architecture team who made
the decision, or quality attribute requirements. The concept of a
decision group is equal to the group concept in Tyree and Aker-
man’s decision template (Tyree and Akerman, 2005), and the
decision categories in Kruchten’s ontology (Kruchten, 2004).

• Problem/issue: The circumstances under which the architect felt
the need to make a decision among one or more alternatives. In
other words, the issue addressed by the decision.

• Decision: The outcome of the decision. In other templates this
element is called solution.

• Alternatives: The alternative solutions considered when making
the decision.

• Related decisions: All decisions that have a relationship to the
decision. The available relationship types are defined in Appendix
C.2.

• Related system concerns: The term system concern is taken
from ISO/IEC/IEEE 42010, (ISO, 2011), describing any interest in
a system on behalf of its stakeholders. System concerns include,
among others: functional and non-functional requirements, con-
straints, business goals, assumptions, risks, and design rules. The
Decision Detail viewpoint is currently the only viewpoint that
allows one to trace requirements and architecture decisions. An
additional viewpoint that specializes on traceability between
requirements and decisions will be discussed in Section 6.

• History: The history of the described decision. The history con-
tains all state changes, i.e., when the decision was proposed,
decided, approved and so on.

Typical stakeholders for this viewpoint are reviewers, architects,
customers, managers, new project members and requirements
engineers. Table 3 shows the concerns framed by this viewpoint
in relation to the respective stakeholders.

Writing elaborate decision descriptions is a resource-intensive
task. However, the flexibility of this viewpoint allows companies
to document just as much as needed for their individual purposes.

Table 3
Typical stakeholders of the Decision Detail viewpoint.

Stakeholders Concerns

Reviewers C1, C2, C3, C4, C5, C6, C11, C18
Architects C1, C2, C3, C4, C5, C6, C11, C18
Customers C3, C6
Managers C18
New project members C3
Requirements engineers C6

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

4 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Fig. 2. Example detail model of an architecture decision.

Some organizations might even decide to skip this viewpoint com-
pletely and only use some of the other proposed viewpoints to
document key aspects of their decisions. Others might decide to use
a subset of the proposed elements of our template. The project team
in our case study felt that there is no need to document every deci-
sion in the same level of detail. They described the major and most
important decisions in detail, while putting less effort in describing
minor decisions.

3.2. Decision Relationship viewpoint

The Decision Relationship viewpoint makes relationships
between architectural design decisions explicit. It shows archi-
tecture decisions, their relationships to other decisions, and their
current states. It has no temporal component, i.e., it shows a
snapshot of the system in a particular moment in time. Typi-
cal stakeholders for this viewpoint are architects, reviewers and
domain experts. Table 4 shows the concerns framed by the view-
point as related to the mentioned stakeholders. They center mainly
around impact, dependency and relationship analysis. In addition,
relationship views are well-suited for getting an overview over all
decisions made. Please refer to Table 1 for the descriptions of the
concerns.

Table 4
Typical stakeholders and concerns for the Decision Relationship viewpoint.

Stakeholders Concerns

Architects C1, C2, C8, C9, C10, C11, C12, C13, C14, C15, C22, C23
Reviewers C1, C2, C9, C10, C11, C12
Domain experts C23

Fig. 3 shows an extract from a relationship view that was created
in a preliminary study conducted to test the decision viewpoints.
The preliminary studies are further described in Section 4.

3.3. Decision Stakeholder Involvement viewpoint

The Decision Stakeholder Involvement viewpoint shows the
responsibilities of relevant stakeholders in the decision-making
process. Views resulting from this viewpoint have no tempo-
ral component. They show decisions, actions and stakeholders
involved in the decision-making process within one specific archi-
tecture iteration. This information is important with regard to
personalization of architectural knowledge, i.e., documenting not
the knowledge per se but who knows what. For many reasons,
in some projects, it is not feasible to fully document the ratio-
nale behind all architecture decisions. Other knowledge remains
tacit; it is not documented at all. In these situations, the rationale
remains in the heads of the people who were involved in the deci-
sion making process. Stakeholder involvement views make these
involvements explicit. Furthermore, the viewpoint allows one to
analyze the impact of personnel on the success or failure of a
project. If, for instance, a large number of decisions made by one
specific architect were rejected, then this could be an indicator for
a problem. As a side effect, explicitly documenting responsibilities
creates accountability, in that people assume responsibility for the
decisions they are involved in. On the other hand, this might cause
architects to neglect the usage of stakeholder views, because they
fear accountability.

Typical stakeholders for this viewpoint are reviewers, architects
and managers. Table 5 shows the concerns framed by this view-
point related to the respective stakeholders. They center around

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 5

Fig. 3. Extract of a relationship view.

stakeholder involvement in decisions. Please refer to Table 1 for
the descriptions of the concerns.

Fig. 4 shows an extract from a stakeholder involvement view
that was created in a preliminary study conducted to test the deci-
sion viewpoints. The names of the involved stakeholders were
changed for privacy reasons. The preliminary studies are further
described in Section 4.

3.4. Decision Chronological viewpoint

The Decision Chronological viewpoint shows the evolution of
architecture decisions in chronological order. Besides decisions,
it shows architecture iterations and its endpoints, which can be
further specified by a type and a date. The chronological view-
point is the only proposed decision viewpoint that has a temporal
component. Typical stakeholders for this viewpoint are review-
ers, architects and new project members who try to comprehend

Table 5
Typical stakeholders of Decision Stakeholder Involvement viewpoint.

Stakeholders Concerns

Reviewers C16, C17, C18
Architects C1, C16, C17, C18, C19
Managers C18, C19

the architecting process during system evolution. Table 6 shows
the concerns framed by this viewpoint related to the respective
stakeholders. A chronological view shows all versions of every
architecture decision of a system. A version of an architecture deci-
sion is defined as a decision with a state. For instance a decision
that was tentative, then became decided and finally approved is
represented with three instances in one chronological view.

Fig. 5 shows an extract from a chronological view created in the
case study, which is presented in Section 4.

4. A case study

To validate the usage of the presented architecture decision
viewpoints in a real software project, we conducted a single case,
embedded case study (Gray, 2009). In a single case design, only a
single case is observed; embedded refers to the fact that multiple
units of analysis are observed in one case.

Table 6
Typical stakeholders of Decision Chronology viewpoint.

Stakeholders Concerns

Reviewers C1, C2, C20, C21
Architects C1, C2, C20, C21, C22
New project members C20

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

6 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Fig. 4. Example stakeholder involvement view on architecture decisions.

This case study is a project executed at the Institute for Internet-
Security (IFIS). The IFIS is a German organization in the Internet and
network-security domain. We examined the decision viewpoints as
applied to a software project called “Sandnet” (Rossow et al., 2011).
Sandnet is a system that executes malware like viruses, worms and
bots in a controlled environment to analyze their network behavior.

4.1. Study goal, research questions and variables

The goal of the case study is to explore whether the architec-
ture decision viewpoints effectively support software architecture
activities. To derive concrete research questions, we explained
the decision viewpoints to the architects of the Sandnet project
and let them decide for which architecture activities they

could be used in their project. They identified the following
activities: general architecture decision documentation, commu-
nication between stakeholders, technical architecture reviews, and
reusing architecture decisions (i.e., architectural solutions) in other
projects.

Then the architects of Sandnet expressed their concerns in deci-
sion documentation with respect to these activities. These concerns
were mapped to the list of concerns shown in Table 1 and supple-
mented by concerns that the authors found important. Finally, the
authors assigned to the activities all viewpoints that were designed
to frame at least one of the concerns mentioned by the architects.
Table 7 shows the results.

Based on the information shown in Table 7, the architects
decided to create views according to the Decision Relationship

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 7

Fig. 5. Example from a chronological view of architecture decisions.

viewpoint, the Decision Chronological viewpoint, and the Decision
Detail viewpoint. They did not see additional benefit in document-
ing a Stakeholder Involvement view, because they were convinced
that the project was small enough to remember the involvement
of all stakeholders. This is in-line with ISO/IEC/IEEE 42010, which
propagates the choice of viewpoints to architects using the stan-
dard, according to the prioritization of the concerns. The concerns
C16, C17, and C19 are not covered in the case study, because the
are exclusively satisfied by the stakeholder involvement viewpoint.
Concern C7 (What decisions have conflicting impacts on concern C?)
is currently not covered by any of the viewpoints in the framework.
We reflect on this issue in Section 6.

Next, we formulated concrete research questions matching the
architecture activities selected by the architects and the related
viewpoints.

The four resulting research questions are summarized in Table 8
and discussed in the remainder of this section.

4.1.1. RQ1 – What is the effort of documenting architecture
decisions using architecture decision viewpoints?

Research question one (RQ1) is about the effort that architects
have to make in order to document architecture decisions using
decision viewpoints. Note that this question is more specific than
the question “Do decision views effectively support stakeholders
to document architecture decisions?”, as could be derived from
the main research goal applied to activity A1. We made RQ1 more
specific, as the effort is essential to judge the effectiveness of the
decision viewpoint approach, and it can be explicitly measured.
RQ1 can be refined with respect to the different viewpoints under
study, i.e.,

• What is the effort of creating a decision relationship view that
conforms to the Decision Relationship viewpoint?

• What is the effort of creating a decision chronology view that
conforms to the Decision Chronology viewpoint?

Table 7
Architecture activities, related concerns and viewpoints.

Architecture activity Concerns Viewpoints

A1 – AD documentation All All
A2 – Stakeholder communication C1, C2, C3, C4, C5, C6, C8, C9, C10, C11, C12, C17, C19, C20, C21 All
A3 – Technical architecture reviews C1, C2, C3, C5, C6, C7, C8, C9, C10, C11, C12, C16, C17, C18, C20, C21 All (C7 not covered)
A4 – Reusing ADs C3, C5, C8, C17, C20, C23 Relationship viewpoint, Chronological viewpoint,

Details viewpoint

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

8 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 8
Architecture activities and related viewpoints.

Code Research question Viewpoints

RQ1 What is the effort of documenting architecture decisions using
architecture decision viewpoints?

Relationship VP, Chronology VP, Details VP

RQ2 Do decision views effectively support stakeholders to understand the
architecture?

Relationship VP, Chronology VP, Details VP

RQ3 Do decision views effectively support architecture reviews? Relationship VP, Chronology VP, Details VP
RQ4 Do decision views support architects to distill reusable decision

sub-graphs?
Relationship VP, Chronology VP, Details VP

Table 9
Dependent variables of RQ1.

Description Scale type Unit Range

Time spent to
create view

Ratio Person-hours Positive natural numbers
including zero

• What is the effort of creating a decision detail view that conforms
to the Decision Detail viewpoint?

One dependent variable is defined for RQ1: the effort of creating
each of the views is measured in person-hours, a common unit to
express effort in software development projects, here defined as the
number of hours spent by one person. Table 9 summarizes the vari-
ables. The statistical scale used to measure values for the variable is
a ratio scale, which means that the possible values for the variable
are ordered, have a zero point, and have equal intervals (Wohlin
et al., 2000). The scale type is needed to determine which statistical
calculations apply for the variable. The range shows which values
can actually be assigned to the variable. In this case, the time is mea-
sured in whole hours; thus, the variable can take positive natural
numbers of hours including zero hours.

Table 10 shows potential variables that might have an influence
on the effort needed to document the views. These independent
variables relate to characteristics of the architects who used the
viewpoints to create views, and to the characteristics of the soft-
ware project that was documented. It is in the nature of case studies
that these variables cannot be controlled (Gray, 2009), thus we
describe them thoroughly so readers can use them to judge the
external validity of the results. This and other potential threats to
validity are discussed in Section 4.4.5.

4.1.2. RQ2 – Do decision views effectively support stakeholders to
understand the architecture?

In research question two (RQ2), we want to find out if decision
views, corresponding to the decision viewpoints, support stake-
holders to understand the architecture. RQ2 is decomposed with
respect to the different viewpoints under study:

• Do decision relationship views effectively support stakeholders
to understand the architecture?

• Do decision chronology views effectively support stakeholders to
understand the architecture?

Table 11
Dependent variables RQ2.

Description Scale type Unit Range

Level of architecture understanding by
the stakeholders

n.a. Open Open

• Do decision detail views effectively support stakeholders to
understand the architecture?

The level of understanding of an architecture that stakehold-
ers gain after studying the decision views is hard to measure and
especially hard to quantify. As dependent variable, we estimate the
level of understanding by qualitatively analyzing questions asked
and comments expressed by stakeholders to the architects after
having studied the decision views (see Table 11).

Table 12 shows independent variables that could influence the
dependent variables. They relate to characteristics of the stakehold-
ers who studied the views and the characteristics of the software
project that was documented.

4.1.3. RQ3 – Do decision views effectively support architecture
reviews?

Research question three (RQ3) aims at finding out if views,
corresponding to the decision viewpoints, support activities per-
formed during architecture reviews. According to IEEE (2008), a
review is an evaluation of a software product by a team of qualified
personnel. Accordingly, an architecture review is an evaluation of
the software architecture by stakeholders who are either domain
experts or architecture experts. In the case study, we had the oppor-
tunity to observe the usage of decision views in an architecture
review. Details on the architecture review are given in Section 4.3.3.

Unfortunately, the IFIS organization had not been following an
established or systematic review approach before the case study.
The architects of the Sandnet project previously performed reviews
in an ad hoc manner, without involving other stakeholders and
without systematically documenting review outcomes. Thus, the
effect of using decision views in the review cannot be compared to
the previous practice.

RQ3 is decomposed with respect to the different viewpoints
under study:

• Do decision relationship views effectively support architecture
reviews?

Table 10
Independent variables of RQ1.

Description Scale type Unit Range

Time the architects have worked in the IT industry Ratio Years Positive natural numbers including zero
Time the architects have worked as software designers/architects Ratio Years Positive natural numbers including zero
Number of architects who created the views Ratio Persons Positive natural numbers including zero
Duration of the documented project Ratio Months Positive natural numbers including zero
Project size Ratio Person-months Positive natural numbers including zero
Number of made decisions Ratio Decisions Positive natural numbers including zero
Average number of words used to document one decision in the detail view Ratio Words Positive natural numbers including zero

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 9

Table 12
Independent variables RQ2.

Description Scale type Unit Range

Time the stakeholder has worked in the IT industry Ratio Years Positive natural numbers including zero
Time the stakeholder has worked as software designer/architect Ratio Years Positive natural numbers including zero
Time the stakeholder has worked in the network security domain Ratio Years Positive natural numbers including zero
How often has the stakeholder been involved in the analysis of architecture

decisions
Ordinal n.a. Five point Likert-scale. One for very frequently,

five for very rarely
Time the stakeholders took to study the views Ratio Min Positive real numbers including zero
Duration of the documented project Ratio Months Positive natural numbers including zero
Number of made decisions Ratio Decisions Positive natural numbers including zero
Average number of words used to document one decision in the detail view Ratio Words Positive real numbers including zero
Time spent to study a view Ratio Person-hours Positive natural numbers including zero

Table 13
Dependent variables RQ3.

Description Scale
type

Unit Range

Level of support for the
review activities

n.a. Open Open

Number of risks uncovered
during the review

Ratio Risks Positive natural numbers
including zero

• Do decision chronological views effectively support architecture
reviews?

• Do decision detail views effectively support architecture
reviews?

Two dependent variables are defined for RQ3. The level of sup-
port for the review activities is estimated by qualitatively analyzing
the transcript from a focus group, conducted with the participants
of an architecture review performed as part of the case study. We
also measure the number of risks that came up during the review
(see Table 13). An elaboration of the focus group can be found in
Section 4.2.2.

Table 14 shows independent variables that could influence the
suitability of decision views to support architecture reviews. They
relate to characteristics of the people who took part in the review,
the software project, and the review approach that is being fol-
lowed.

4.1.4. RQ4 – Do decision views support architects to distill
reusable decision sub-graphs

The last research question (RQ4) is about identifying a set of
decision sub-graphs or logically grouped architecture decisions
that can be reused as a whole in other software projects. An example
for such a decision sub-graph is the choice of a database manage-
ment system (DMBS), the choice of a hardware platform for the
DBMS, the choice of an operating system for the hardware plat-
form and a communication protocol for accessing the DBMS. The
sub-graph contains all possible design options, the chronological

Table 15
Dependent variables RQ4.

Description Scale
type

Unit Range

Number of identified
reusable decisions

Ratio Decisions Positive natural numbers
including zero

Level of support for
identifying reusable
decision sub-graphs

n.a. Open Open

order of the decisions and the rationale behind each of the deci-
sions. RQ4 is decomposed with respect to the different viewpoints
under study:

• Do decision relationship views support architects to distill
reusable decision sub-graphs?

• Do decision chronological views support architects to distill
reusable decision sub-graphs?

• Do decision detail views support architects to distill reusable
decision sub-graphs?

To find out if decision views support this process, we inde-
pendently asked the architects and other technical stakeholders
to identify concrete reusable decisions. Subsequently, we counted
the decisions and evaluated the level of support provided by the
views in order to identify them (see Table 15).

Table 16 shows independent variables that might have an influ-
ence on the dependent variables. They relate to characteristics of
the architects who distilled the reusable decisions, and the software
project.

4.2. Study design and execution

The aim of case studies in general is the investigation of con-
temporary phenomena in their natural context (Robson, 2002; Yin,
2003). According to Robson’s classification scheme for empirical
research purposes (Robson, 2002), our case study is exploratory
in nature. We aim at understanding how and which architecture

Table 14
Independent variables RQ3.

Description Scale type Unit Range

Time the reviewers have worked in the IT industry Ratio Years Positive natural numbers including zero
Time the reviewers have worked as software designer/architect Ratio Years Positive natural numbers including zero
Time the reviewers have worked in the network security domain Ratio Years Positive natural numbers including zero
How often have the reviewers been involved in the analysis of

architecture decisions
Ordinal n.a. Five point Likert-scale. One for very frequently, five

for very rarely
How often have the reviewers been involved in architecture reviews Ordinal n.a. Five point Likert-scale. One for very frequently, five

for very rarely
Activities performed in the architecture review n.a. Open Open
Duration of the documented project Ratio Months Positive natural numbers including zero
Number of decisions documented Ratio Decisions Positive natural numbers including zero
Average number of words used to document one decision in the detail

view
Ratio Words Positive real numbers including zero

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

10 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 16
Independent variables RQ4.

Description Scale
type

Unit Range

Time the stakeholders have
worked in the IT industry

Ratio Years Positive natural numbers
including zero

Time the stakeholders have
worked as software
designers/architects

Ratio Years Positive natural numbers
including zero

Number of made decisions Ratio Decisions Positive natural numbers
including zero

activities can be supported by decision viewpoints. We chose the
case study method because we aim at validating the proposed docu-
mentation framework in industrial practice, where the researchers’
control on the observed events is typically low. This is in line with
Gray, who suggests that case studies are appropriate where “how”
and “why” questions about a set of events must be answered, over
which the researcher has no control (Gray, 2009). Additionally, the
effect of using decision viewpoints in a project might be multi-
faceted, which also makes the case study method more suitable
than other empirical research methodologies which require control
over independent variables (e.g., a controlled experiment) (Wohlin
et al., 2003).

To elicit hidden variables and as a preparation for the study
design, we conducted three small pilot studies with the decision
viewpoints. In all three projects, our viewpoints were used to docu-
ment the design decisions made. One of the authors was involved in
all of the projects. The following projects were used as pilot studies:

• Open Pattern Repository (OPR): a freely usable, open source
online repository for patterns and technologies. All project arti-
facts including source code, architecture decisions and design
documents can be found in the project’s Google code repository
(Code-Google, 2011).

• Open Decision Repository (ODR): the ODR is an open source web
documentation tool for architecture and design decisions. Like
the OPR, all project artifacts can be found in the project’s Google
code repository (Opendecisionrepository, 2011). We elaborate on
the Open Decision Repository in Section 6.

• Measurement collector for network traffic analysis: this so-called
“raw data transfer system” is part of an Internet early warning
suite. The part of the system we looked at is responsible for col-
lecting data measured by probes that are located in different
autonomous systems that comprise the German connection to
the Internet. Details about the vendor as well as the software
itself cannot be provided, as the organization asked us to treat
this data confidentially.

In the following subsections, the observed case and the used
data collection methods are described.

4.2.1. Case description
The IFIS, in which the case study was conducted, currently has 49

employees working in nine main projects (as of March 2011). The
project domains include cloud computing, botnet analysis, identity
management and Internet early warning. Customers of the organi-
zation are, among others, large telecommunication providers and
the German Federal Office for Information-Security.

In the project under study (Sandnet), malware collected on the
Internet is executed in a prepared network for further analysis.
The software provides a controlled execution environment for the
extensive analysis and safe execution of malware samples. One of
the major challenges in the project is to provide a realistic environ-
ment for malware execution on the one hand, while preventing the
malware from doing harm in external networks. For instance, the

Sandnet forwards denial-of-service or spam attacks to a dedicated
honeypot server to protect the original destination of the attack,
while analyzing the complete network traffic. The project started
in September 2009 and is ongoing. In total, four developers are
involved in the project; two of them are responsible for the software
architecture. Important stakeholders of the system, apart from the
developers and architects, are network administrators who oper-
ate the Sandnet in their networks and malware authors who have
a negative stake in the system, because they do not want their mal-
ware to be analyzed. The project team follows no defined software
development process. They work in small iterations of a few weeks
and document the system in a company-wide wiki.

4.2.2. Data collection
Data gathered in case studies is mainly qualitative. Because

qualitative data is typically less precise than quantitative data, it is
important to use triangulation to increase the precision of the study
(Runeson and Hoest, 2009). Triangulation provides a broader repre-
sentation of the research object under study. We use two different
types of triangulation: methodological and data source triangu-
lation (Stake, 1995). Methodological triangulation takes different
types of data collection into consideration. In this case study we
used participant observation, focus group, interview and analysis
of work artifacts (Lethbridge et al., 2005). Data source triangulation
uses multiple data sources at potentially different occasions. Dur-
ing this case study, we collected data during multiple sessions with
the architects of the project and other stakeholders. Table 17 shows
an overview of the sessions, the data collection method used, the
data sources, and related research questions.

In the following, the data collection methods used are described
in more detail.

• Participant observation: Participant observation is a popular
data collection method in case studies (Mack et al., 2005; Gray,
2009; Yin, 2003; Seaman, 1999). It involves systematic viewing of
actions performed by the observed subjects, recording, analysis
and interpretation of the observed behavior. In the observation
sessions listed in Table 17, one of the researchers joined the
observed subjects during their work. The researcher had access
to all documents the subjects used during these sessions and
he listened to entire communications in cases where multiple
subjects collaborated. During these sessions, the researcher took
notes about working topics, time spent, communication issues
and other observations that could have a relation to the research
questions and their corresponding variables. The session notes
and copies of the project artifacts used by the observed subjects
were stored in a case study database as proposed by Gray (2009).

• Focus group: Focus group data collection is a well-documented
technique that assembles small groups of peers to discuss par-
ticular topics. Discussion in focus groups is largely open, but it
is directed by a moderator allowing soft, or qualitative issues
to be explored. Kontio et al. mention additional advantages of
focus groups in comparison to other qualitative research meth-
ods (Kontio et al., 2004). They observed that the interactive nature
of the group discussions with people from different backgrounds
encourages participants to react to the comments made by other
participants, thus reflecting and building on each other’s experi-
ences. It also helps to validate comments and positions, as some
points made by participants may result in other participants con-
firming similar, almost similar or opposite points. These insights
would be invisible in personal interviews. The researchers have
experience in conducting focus groups from previous studies;
therefore a pilot session was not performed. The guidelines pre-
sented in Mack et al. (2005) were used to prepare and conduct
the focus group. In particular, a question guide was created in
advance and internally reviewed by the authors. The questions

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 11

Table 17
Data collection methods.

Data collection method Sessions Data sources Research questions

Participant observation Initial architecture decision elicitation Architect1, Architect2 RQ1
Initial creation relationship view Architect1 RQ1
Refinement relationship view Architect2 RQ1
Discussion about relationship view Architect1, Architect2 RQ1
Initial creation of decision detail view, refinement relationship
view

Architect1 RQ1

Discussion of detail view, refinement relationship view, initial
creation chronological view

Architect1, Architect2 RQ1

Planning of architecture review based on decision views Architect1, Architect2 RQ3
Revision decision views, revision of architecture review
planning

Architect1 RQ1, RQ3

Architecture review Architect1, Architect2, three domain experts,
two architecture experts

RQ2, RQ3

Focus group Conducted immediately after the architecture review Architect1, Architect2, three domain experts,
two architecture experts

RQ2, RQ3, RQ4

Interview Conducted at the end of the case study Architect1 RQ1–RQ4
Conducted at the end of the case study Architect2 RQ1–RQ4

Analysis of work
artifacts

n.a. Existing architecture documentation, produced
decision views, outcome of the architecture
review

RQ1, RQ2, RQ4

in a question guide are not asked directly, but serve as orienta-
tion for the moderator of a focus group. Focus groups are most
productive, if the participants are encouraged to have an open
discussion, while the moderator tries to lead the discussion in a
way that all important questions are answered. The used question
guide can be found in Appendix E.

The focus group was conducted by involving all people who
took part in a technical architecture review; one of the authors
was allowed to join that review. The complete session was audio-
recorded with the participants’ consent and afterwards transcribed.
Additionally, the moderator (researcher) took notes about observa-
tions that could not be captured on tape, e.g., collective nodding of
participants. The audiotape, notes and the transcript were stored
in the case study database.

• Interview: Interviews allow researchers to gain in-depth knowl-
edge about the interview topics. Like focus groups, they enable
researchers to ask interviewees for clarification to solve poten-
tial misunderstandings (Lethbridge et al., 2005). Interviews are
an appropriate means to collect opinions and impressions about
the object under study (Seaman, 1999). The two interviews with
the architects lasted between 50 and 60 min each. They were
conducted via videoconferences, because the architects were not
on-site in their organization at that time. Both interviews were
digitally recorded with the participants’ consent and later tran-
scribed. The original audio files and the transcripts were stored
in the case study database.

• Analysis of work artifacts: This data collection method is used
to uncover information about how the architects applied and
used decision views by looking at their output. In this particu-
lar case, we looked at architecture documentation in wikis, the
decision views created by the architects, the architecture review
planning document and the architecture review report to gather
data relevant for our research questions. All collected documents
were stored in the case study database. The authors of the doc-
uments were contacted to clarify questions and issues related to
the documents.

4.3. Analysis

We use descriptive statistics and qualitative analysis to examine
the data gathered during the case study. This section is sub-divided
according to the research questions.

4.3.1. Analysis RQ1 – What is the effort of documenting
architecture decisions using architecture decision viewpoints?

As described in the study design, the effort of documenting
architecture decisions is influenced by some independent variables.
Table 18 shows descriptive statistics for the variables defined in
Table 10.

The Duration of the documented project is the total time in cal-
endar months spent on the project, whereas the Project size is
the time spent in person-months. The variable Number of deci-
sions documented indicates the number of decisions that have been
documented using the decision view approach. To the best of our
knowledge, the architects documented every design decision they
found architecturally significant in the project. The “architectural
significance” of decisions, however, is not essential for the deci-
sion documentation approach presented here. Many definitions for
architecture decisions exist; e.g., architecture decisions are those
decisions that have an impact on the system’s quality attributes;
others emphasize on the external visibility of those decisions. We
keep it simple by assuming that a decision is architectural in nature,
if the architect believes it is architectural and should be docu-
mented.

For the calculation of the average number of words used to doc-
ument a decision, the words used in every decision detail model
were counted; thus no other views were taken into account for this
variable.

The effort, according to the dependent variable, is calculated in
terms of time spent to create the different views. Table 19 shows the

Table 18
Independent variables RQ1.

Variable Values

Time the architects have
worked in the IT industry

Architect1: 6 years, Architect2: 6 years

Time the architects have
worked as software
designers/architects

Architect1: 4 years, Architect2: 5 years

Number of architects who
created the views

2

Duration of the documented
project

13 months

Project size 21 person-months
Number of decisions

documented
56

Average number of words used
to document one decision in
the detail view

61

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

12 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Table 19
RQ1 – Effort for creating views.

Decision elicitation Relationship view Detail view Chronological view

11 person-hours 4 person-hours 7 person-hours 2 person-hours

Table 20
Percentage effort for creating views.

View Percentage of total development effort

Relationship view 0.21%
Chronological view 0.15%
Detail view 0.29%

effort in person-hours spent to create views for the corresponding
viewpoints. Decision elicitation is shown as an additional category.
This is necessary, because architecture decisions have not been
documented in the Sandnet project prior to the case study; thus
all architecture decisions had to be elicited from existing project
documentation and brainstorming sessions by the two architects.

The total effort for creating the three views according to
our viewpoint definition was 24 person-hours, which equals 3
person-days and 0.14 person-months. The effort has to be ana-
lyzed in the context of the project size. In this case, the project
size was 21 person-months, which equals 3696 person-hours
(21months × 22days × 8 h). Table 20 shows the effort for creating
each view as percentage of the total development effort. In this cal-
culation, the effort for decision elicitation was portioned equally to
the three views, as it cannot be assigned to a single view.

We note that in our experience, the order of view creation fol-
lowed in the case study works well under the assumption that the
relationship view is good for an initial documentation of decisions.
It is a lightweight view in the sense that decisions can easily be
added or removed and related to other decisions. In contrast to
the decision detail view, in which decisions have to be described
in textual form, revising decisions and relationships in the rela-
tionship view is just a matter of drawing ellipses and connectors.
This allows for subsequent refinements in quick iterations. Once the
main decisions and decision relationships are documented, effort
can be invested to capture the decisions in the detail view. Finally,
the chronological view adds information about the evolution of
the decisions. Remembering the correct chronological sequence of
decisions requires a lot of reflection by the architects, if created after
the fact. Therefore, in “green field” projects, it can make more sense
to create the chronological view right away and revise it iteratively
during the project.

The subjects in the case study had to overcome a learning curve,
i.e., learn how to use the viewpoints in order to design the views. We
assume that the same subjects would be able to document decision
views more quickly in future projects. However, this assumption is
subject to further empirical evaluation.

The total effort for creating the three views was approximately
0.65% of the total development effort in person-time. In addition
to the quantitative analysis of the effort needed to create decision
views, we asked the architects about their subjective estimation of
the effort. Moreover, we wanted to know which views they would
create if they were very limited in time.

The transcripts of the interviews with the architects were ana-
lyzed using the constant comparison method (Glaser and Strauss,
1967), a well-established theory generation method in qualitative
analysis (Seaman, 1999). In detail, the following procedure was fol-
lowed. The original comments in the interviews were given mainly
in colloquial speech and many of them can only be interpreted in
the context of the whole interview. We browsed the transcripts
of the interviews and searched for passages of text related to the
research question. The respective passages were labelled and later

grouped into patterns expressing their content as more formal,
context-free statements. This procedure was used for the qualita-
tive analysis of the interviews and the focus group conducted after
the review. An example of the analysis process is given in Appendix
D.

Finally, the original transcript, the extracted comments, and the
derived statements were given to two of the participants of the
focus group for validation. They concordantly acknowledged that
the information in the derived statements is similar to the infor-
mation in the original comments.

The following statements were derived from text passages in
the interviews with the architects, labelled with RQ1:

• How reasonable the effort for creating decision views is, depends
on the number of team members and the duration of the project.

• The decision detail view is the most important view for the orig-
inal architects.

• The decisions in the detail view can be documented with just a
few attributes (rather than all of them).

• The decision detail view is not helpful in isolation. It should be
complemented at least with a relationship view in order to create
an overview of decisions for the other stakeholders who were not
directly involved in the decision making process.

• When there is no time to document all views, the architects would
skip the chronological view and only create a detail view and a
relationship view.

• Important decisions should be documented in more detail than
less important decisions.

• The effort for creating decision views is definitely reasonable from
the point of view of the project sponsor (the organization funding
the project).

• The effort for creating decision views is marginal compared to the
whole development effort of the project.

4.3.2. Analysis RQ2 – Do decision views effectively support
stakeholders to understand the architecture?

As with RQ1, we use descriptive statistics to describe the inde-
pendent variables. Table 21 shows descriptive statistics for the
variables defined in Table 12.

The support for architecture understanding provided by the
views is estimated in terms of the level of architecture under-
standing gained by the stakeholders after studying the views. The
analysis of this dependent variable is done qualitatively. During
the case study, a technical architecture review was conducted with
the architects, a few experts in the network security domain and
experts on software architecture. All people, except for the archi-
tects, were not familiar with the Sandnet system at all. Two days
before the review, all participants were asked to analyze the sys-
tem by studying the decision views we provided to them. Right
after the review, we interviewed all participants in a focus group
where we also asked questions about the suitability of the views
for understanding the system. The transcript of the audio-recorded
focus group is used as a basis for the analysis. We used the constant
comparison method, as described in Section 4.3.1. The following
lists show the resulting participants’ statements for the different
viewpoints under study:

Relationship viewpoint:

• Relationship views clearly illustrate relationships between deci-
sions.

• Relationship views support impact analysis.
• Relationship views illustrate decision relationships better than

decision detail views.
• Relationship views illustrate dependencies between decisions.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 13

Table 21
Independent variables RQ2.

Variable Statistics

Time the stakeholders have worked in the IT
industry

Stakeholder1: 12 years

Stakeholder2: 5 years
Stakeholder3: 15 years
Stakeholder4: 2 years

Time the stakeholders have worked as
software designers/architects

Stakeholder1: 12 years

Stakeholder2: 5 years
Stakeholder3: 0 years
Stakeholder4: 2 years

Time the stakeholder has worked in the
network security domain

Stakeholder1: 6 years

Stakeholder2: 0 years
Stakeholder3: 14 years
Stakeholder4: 2 years

How often have the stakeholders been involved
in the analysis of architecture decisions

Stakeholder1: Rarely

Stakeholder2: Frequently
Stakeholder3: Very rarely
Stakeholder4: Rarely

Time the stakeholders took to study the views Stakeholder1: 70 min
Stakeholder2: 90 min
Stakeholder3: 35 min
Stakeholder4: 60 min

Duration of the documented project 13 months
Number of documented decisions 56
Average number of words used to document

one decision in the detail view
61

• Relationships views do not contain enough information about a
single decision.

• A combination of the decision detail view and the other decision
views is necessary.

• The relationship view is good to get an overview of decisions
made.

• The relationship view helps to start understanding a system,
much better than the decision detail view.

Chronological viewpoint:

• The chronological view helps to understand the evolution of the
system.

• Chronological views provide insights into the reasoning process
of the architects.

• Chronological views show which solutions were considered,
rejected and chosen.

• The chronological view is well suited to understand the decision
making process in complex software systems.

• Chronological views are good to analyze change of the architec-
ture over time.

Detail viewpoint:

• Decision detail views are important to analyze the reasoning and
the details of every decision.

• A combination of the decision detail view and the other decision
views is necessary.

• Detail views are hard to handle in isolation, because they produce
large amounts of text on too many pages.

All viewpoints:

• Decision views help to recap the decision making process for a
single decision, including considered alternatives.

• Decision views are helpful to communicate architecture decisions
to project teams taking over the system.

Table 22
Independent variables RQ3.

Variable Statistics

Time the reviewers have worked in the IT
industry

Stakeholder1: 12 years

Stakeholder2: 5 years
Stakeholder3: 15 years
Stakeholder4: 2 years

Time the reviewers have worked as software
designers/architects

N: 4

Stakeholder1: 12 years
Stakeholder2: 5 years
Stakeholder3: 0 years
Stakeholder4: 2 years

Time the reviewers have worked in the
network security domain

N: 4

Stakeholder1: 6 years
Stakeholder2: 0 years
Stakeholder3: 14 years
Stakeholder4: 2 years

How often have the reviewers been involved in
the analysis of architecture decisions

N: 4

Stakeholder1: Rarely
Stakeholder2: Frequently
Stakeholder3: Very rarely
Stakeholder4: Rarely

How often have the reviewers been involved in
architecture reviews

Stakeholder1: 15 times

Stakeholder2: 5 times
Stakeholder3: 1 time
Stakeholder4: 3 times

Duration of the documented project 13 months
Number of decisions documented 56
Average number of words used to document

one decision in the detail view
61

• Decision views prevent new project teams or team members from
making fatal decisions.

• Decision views help people to understand which decisions were
made for which reasons and which decisions were explicitly not
made for specific reasons.

• Decision views are very helpful.
• Decision views are a good means to transfer architecture knowl-

edge.
• The architects were amazed how much the stakeholders knew

about the system after having studied the views.
• Software engineers should be obliged to create decision views as

a complement to the other architecture documentation.
• Decision views capture architectural knowledge that cannot

be recovered from traditional views; especially discarded and
rejected decisions and the reasoning behind decisions.

4.3.3. Analysis RQ3 – Do decision views effectively support
technical architecture reviews?

Table 22 contains descriptive statistics for the independent vari-
ables described in the study design.

In addition to the variables described in Table 22, the activities
performed in the architecture review have an effect as indepen-
dent variable. In the case study, a technical architecture review was
performed based on a custom architecture review method, which
will be explained in the following. The review was performed in
two phases. In phase one, the reviewers received a review-planning
document containing the schedule of the review, a description of
the Sandnet project, the main stakeholders, and architecturally rel-
evant requirements, as well as a network topology view and all
documented decision views (i.e., a relationship view, a chronolog-
ical view and a decision detail view). Additionally, they received a
description of five technical scenarios. The scenarios had been doc-
umented in the company wiki by the architects as possible future
changes or enhancements, prior to the case study. An example of a

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

14 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

technical scenario as described in the review-planning document
is: “Currently, malware samples are executed by a sandpuppet
for exactly 1 h. How is the architecture of the system affected if
malware samples are executed for a complete day/week or even
longer? Currently, there are 80 virtual machine slots for paral-
lel execution of malware samples available”. The reviewers were
asked to study the views with respect to the scenarios in advance
and write down all uncertainties and questions. Phase one was per-
formed individually and off-site. Phase two was the actual review
conducted on-site in the organization. Table 23 shows the schedule
of the review and the activities performed.

During the review, the reviewers selected three scenarios out
of the five available ones, based on their own judgement of the
scenarios’ importance. The detail view and the relationship view
were used to identify and analyze decisions that have an effect on
the respective scenario. The third selected scenario was skipped
because of time constraints. The participants planned an additional
review session outside the time-period of the case study.

The support for technical architecture reviews provided by the
decision views is estimated in terms of the number of risks that
came up during the review and the level of support for the per-
formed reviewing activities. To estimate the number of identified
risks during the architecture review, we analyzed the risk evalu-
ation forms filled in by the reviewers during the scenario-based
reviews. Risk evaluation forms are part of the Software Risk Evalu-
ation (SRE) Method (Williams et al., 1991) defined by the Software
Engineering Institute, which was used by the architects to evaluate
the risks uncovered during the review. In total, the four review-
ers recorded 27 distinct risks (reviewer 1: 3 risks, reviewer 2: 4
risks, reviewer 3: 12 risks, reviewer 4: 8 risks). Out of the 27 risks,
the architects regarded five risks as high or medium severity. The
other risks were either low severity, or the architects did not share
the reviewer’s opinion. The analysis of the support for reviewing
activities was done based on an examination of the focus group
transcripts, in which the support for architecture reviews was
explicitly discussed. For the qualitative analysis we followed the
same procedure as described for RQ1. The following lists show the
derived participants’ statements assigned to the respective review-
ing activities:

Activity: Architect explains evolution of the system using the
chronological view

• The chronological view helps the architect to explain the evolu-
tion of the system.

• The chronological view helps to explain and remember the
change of decisions over time.

• The chronological view helps reviewers to understand the evolu-
tion of the system.

Table 23
Review schedule.

Time Activity

14:10 Start
14:20 to 14:30 Introduction of the Sandnet project by the architects
14:30 to 14:40 Introduction of the review process and goals by the review

organizer
14:40 to 14:55 One of the architects explained the evolution of the system

using the chronological view
14:55 to 15:05 Choice of three scenarios out of the five scenarios

described in the review-planning document
15:05 to 15:50 Review scenario 1 using the decision detail view and the

relationship view
15:50 to 16:30 Review scenario 2 using the decision detail view and the

relationship view
16:30 to 17:00 Wrap-up session including discussion and documentation

of all discovered issues

Activity: Architect clarifies questions with respect to the system

• Decision views are well suited for explaining the architecture to
stakeholders.

• Decision views can make sure that nothing is forgotten when
explaining the architecture.

• Decision views make sure that the architecture can be commu-
nicated in a structured and understandable way.

Activity: Review scenarios

• The logical groups in the relationship view help to structure the
decisions.

• The logical groups in the relationship view help to keep the
overview over decisions.

• The relationship view supports the architect to perform impact
analyses.

• The chronological view can be used to analyze changes between
architecture iterations.

• The chronological view allows looking up changes between iter-
ations quickly.

• Relationship views help reviewers to identify critical issues in the
architecture.

• Relationship views visualize decision alternatives and allow
reviewers to evaluate the final choice among the alternatives.

• Without decision views, the decisions and their relationships
have to be elicited during the review.

• Decision views are a good basis for architecture reviews.
• Relationship views emphasize central decisions and decision

alternatives.
• Relationship views allow identifying critical decisions quickly.
• Decision views capture architectural knowledge that cannot

be recovered from traditional views. Especially discarded and
rejected decisions and the reasoning behind decisions.

• The chronological view helps to understand changes between
architectural milestones.

• Decision views allow reviewers to reassess if the architects have
evaluated the right decision alternatives soundly.

• Decisions views can be used to assess if architectural problems
were analyzed correctly.

• Decision views are helpful as a complement to traditional archi-
tecture documentation.

4.3.4. Analysis RQ4 – Do decision views support architects to
distill reusable decision sub-graphs?

As for the fourth research question, we present descriptive
statistics for the independent variables. Table 24 shows the results.

The support that decision views provide for distilling reusable
decision sub-graphs is estimated in terms of the number of con-
crete reusable decision sub-graphs identified by the stakeholders
and architects; and the level of support the decision views provide

Table 24
Independent variables RQ4.

Variable Statistics

Time the stakeholders have worked in the IT
industry

Stakeholder1: 12 years

Stakeholder2: 5 years
Stakeholder3: 15 years
Stakeholder4: 2 years

Time the stakeholders have worked as
software designers/architects

Stakeholder1: 12 years

Stakeholder2: 5 years
Stakeholder3: 0 years
Stakeholder4: 2 years

Number of decisions documented 56

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 15

for identifying reusable decision sub-graphs. The latter is analyzed
based on the transcripts created from the focus group after the
review, in which we asked the participants to identify reusable
decisions paths with the help of the documented views and the
transcripts from the interviews with the architects.

The architects and stakeholders found the relationship view
helpful to identify reusable decision sub-graphs. The relation-
ship view documented for the Sandnet project contains six logical
decision groups with 56 decisions in total. The stakeholders and
architects were asked to identify concrete decision sub-graphs that
could be reused in other software projects. From the six logical
groups, they selected four groups that contain reusable decisions.
Group one contains decisions about a web application used to
access analysis data and configure sandpuppets; group two con-
tains decisions related to the used database management system;
the decisions in group three are about the control mechanism for
the herders; and group four contains decisions related to the vir-
tual machine technology and configuration used. The decisions in
the remaining two logical groups were regarded as being too spe-
cific for being reusable. The analysis of the level of support was
done qualitatively—similarly to the qualitative analysis described
in RQ2 and RQ3. The first set of statements was given by the archi-
tects during the interviews, the second set of statements was made
by the other stakeholders during the focus group after the review.

Architects:

• When identifying reusable decision sub-graphs, the dependen-
cies upon other decisions can be evaluated using the relationship
view.

• The relationship view provides good support for identifying
reusable decision sub-graphs.

• Decisions that are strongly coupled to concrete requirements
cannot be reused.

Stakeholders:

• Decision views are helpful to derive reusable decision sub-graphs.
• Logical decision groups in the relationship view are strong can-

didates for reusable paths.
• Logical decision groups in the relationship view are optimal deci-

sion combinations in the given context.
• The relationship view is well suited for extracting reusable archi-

tectural knowledge.
• Relationship views help to speed up the start of new projects.
• Relationship views provide guidance for architects with respect

to dependencies between decisions and decision options.
• When reusing decisions from the relationship view, it is impor-

tant to consider the context in which the decisions were made.
• Decision views help architects to recap the decisions made.
• For reusing decisions from the relationship view, the decision

detail view is needed to judge if the context and the requirements
behind the decision match.

• Logical decision groups in the relationship view are strong can-
didates for reusable paths.

• It is important to look at the goals of the decisions before reusing
them.

• Decisions can be directly reused if the architectural goals behind
the decisions are compatible with the goals of the new project.

• If the decisions’ goals of the new project are not compatible with
those of the documented project, then the decision views can still
be used to identify candidate decisions that have to be reevalu-
ated in other projects.

• Decision views provide reusable decision alternatives.
• Decision views allow reusing decisions for comparable problems.

• Decision views provide a basis for decision-making processes in
other projects.

• By studying decision views for reuse, architects can make sure
they do not forget decision options.

4.4. Interpretation

In this section, the results of the analysis are interpreted. At the
end of the section, we discuss potential threats to the validity of
this study.

4.4.1. Interpretation RQ1
Research question one is about the effort needed to create

decision views according to our viewpoint specifications. In the
analysis, we showed that the documentation of the decision views
took approximately 0.65% of the total development effort of the
software project under study. For the Sandnet project, this means
that less than 1 h (39 min) out of 100 person-hours had to be spent
in order to create a relationship view, a chronological view and
a decision detail view. The effort needed to create an individual
view is hard to generalize, as it depends on the order in which the
views were created. In this case study, the architects had not doc-
umented architecture decisions at all prior to the case study; thus
all decisions had to be elicited in the first place. This took by far
the greatest effort. Creating the detail view takes the second great-
est effort. Finally, the relationship view and the chronological view
follow in the effort ranking. Once decisions are documented in the
detail view, the effort for creating the other views for the decisions
is relatively low.

From the interviews with the architects, we learned that they
would document the detail view first, but they would not describe
every decision at the same level of detail. Some decisions might be
more important or more complicated than other decisions; these
decisions should be described in detail. Other decisions that are
easy to comprehend do not have to be documented in detail. After
the detail view, the architects would create a relationship view. The
effort for creating the chronological view—at least in the opinion
of the Sandnet architects—only pays off if projects are subject to
long-term evolution.

It can be concluded that the effort for creating decision views
is relatively low compared to the complete development effort.
Depending on the available time, architects may choose not to
document all views, but choose a subset depending on the char-
acteristics of the concrete project. The architects mutually agreed
that the effort for creating decision views is reasonable from the
point of view of the project sponsors, which means the cost-benefit
ratio of the decision views is low.

4.4.2. Interpretation RQ2
Research question two concerns the support for stakeholder

communication offered by the views. The independent variables
presented in the analysis show that the people who used the views
to study the architecture of the Sandnet project were rather inexpe-
rienced with respect to architecture decision analysis. On average,
they stated that they were rarely involved in the analysis of archi-
tecture decisions and that they have worked in the IT industry
for less than ten years, which means that they are rather inex-
perienced technical stakeholders. On average, they took slightly
more than 1 h to study the decision views of the Sandnet project;
none of them knew the project in advance. It is notable that the
architects of the Sandnet project were astonished by the knowl-
edge the stakeholders gained about the project just by analyzing
decision views. This impression is supported by the fact that the
short preparation time was sufficient to identify major risks dur-
ing the architecture review. The stakeholders concordantly stated
that the relationship view is well suited to get an overview of the

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

16 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

decisions made and to understand the relationships and dependen-
cies between the decisions. The chronological view helped them to
understand the evolution of the system and to get an insight into the
architects’ reasoning process. The decision detail view was seen as
an important complement to the other two views in order to grasp
the rationale behind a single decision. Finally, all stakeholders and
the architects of the project agreed that decision views are a good
means to communicate architecture decisions.

4.4.3. Interpretation RQ3
RQ3 is about the suitability of decision views to support archi-

tecture reviews. With one exception, the reviewers were rather
inexperienced in performing architecture reviews. Nevertheless,
the analysis showed that they were able to find 27 risks in the cur-
rent architecture, from which the architects confirmed five risks as
being important.

Decision views are beneficial for the preparation of architec-
ture reviews, as they give an overview over decisions made, show
dependencies between decisions and allow comprehending the
rationale behind single decisions. The chronological view allows
reviewers to recap the evolution of the system and to quickly iden-
tify decisions that have changed since the last architectural review.
The relationship view was found especially well suited for identi-
fying important and critical decisions, performing impact analyses,
and finding dependencies between decisions. The fact that rejected
decisions and discarded decision alternatives are shown in the
views allows the evaluation of single decisions quickly. Moreover,
decision views support the architects in communicating the archi-
tecture to the reviewers in a structured way, thus ensuring that no
important decisions are forgotten. The participants of the review
mutually agreed that decision views are a good basis for archi-
tecture reviews that supports many review activities; particularly
the introduction of the architecture to the stakeholders and the
discussion of review scenarios.

4.4.4. Interpretation RQ4
Decisions views offer support for identifying reusable decision

sub-graphs. Especially the relationship view was found helpful for
identifying reusable decisions. The logical decision groups within
this view are candidates for decision sets that can be reused as a
whole. However, the reusability always depends on the context, in
which decisions were made. Decisions from other projects can only
be reused if the context and the architecturally significant require-
ments are comparable. The information from the decision detail
view is essential to judge this for single decisions. One important
aspect of decision views is that they record decision alternatives.
This information is often not part of an architecture description,
because many alternatives have not made it in the final archi-
tecture. Decision alternatives constitute valuable information for
decision sub-graphs as they allow one to prepare decisions for
question-option-criteria trees (MacLean et al., 1991), i.e., if require-
ment A then decision alternative B, if requirement C then decision
alternative D and so on. Finally, studying decision views from
projects in the same domain can help architects to make sure that
no important decisions or decision alternatives have been forgot-
ten.

4.4.5. Threats to validity
Construct validity is the degree to which the case is relevant with

respect to the research questions (Runeson and Hoest, 2009). A fre-
quent problem in case study research is that the case study design
fails to clearly define operational measures, which allow one to
objectively judge the collected data (Yin, 2003). In this case study,
we clearly defined the research questions prior to the data collec-
tion phase. The methods for the data collection were systematically
selected in order to sufficiently address all four research questions.

Furthermore, for every research question, we defined the depen-
dent variables used as “measurements” to judge the data as well as
the independent variables influencing those measurements.

We used different means to improve the internal validity of our
findings. Internal validity concerns hidden factors, which affect the
dependent variables (Wohlin et al., 2003). Using different types
of triangulation can increase the reliability of the study results
(Runeson and Hoest, 2009; Lethbridge et al., 2005). In this case
study, we used several types of data source triangulation, e.g., by
performing interviews with different people or by looking into dif-
ferent work artifacts. We also used methodological triangulation by
combining different types of data collection methods. With the two
types of triangulation, we made sure that every research question
was addressed by more than one data source and by using different
collection methods.

A potential threat to internal validity is the identification of
the technical scenarios evaluated in the architecture review. The
architects who defined the scenarios could have consciously or
unconsciously defined scenarios that are well supported by the
decision views. This could have resulted in a higher valuation of
the decision views by the review team. This, however, was not the
case. The scenarios were defined by the architects prior to and inde-
pendent from the case study. They were documented as potential
future changes or enhancements in the company wiki. To partially
eliminate bias on the side of the architects, the review team chose
three out of the five scenarios based on their own estimation of the
scenarios’ importance.

External validity is related to the generalizability of the results
with respect to a specific population. External validity is regarded
as a major problem in case study research because only one case
is studied; which makes statistical generalization impossible (Yin,
2003). We believe that our findings are valid at least for projects
that have a comparable size (in person-months and development
team) and use similar architecture approaches. However, external
validity can only be shown (e.g., by analytic generalization, Yin,
2003) with at least a few replications. Although we have observed
many of our findings in the three pilot projects (see Section 4.2)
before conducting the case study, a systematic replication of the
study in different projects and organizations is needed to support
the claim for external validity.

5. Related work

Our work is related to the following fields within software
architecture: architecture decision documentation and architec-
ture decision views.

5.1. Decision documentation approaches

There are currently three main approaches to documenting
architecture decisions. We briefly present these approaches and
describe how our proposed viewpoints relate to each of them:

Decision templates: Different templates have been proposed to
describe architecture decisions in textual form, mainly
using tables (see for instance Tyree and Akerman, 2005).
They can be used to capture relevant rationale behind
decisions including, among others, assumptions, alter-
native decision outcomes, the decision state, related
requirements, and possibly related decisions. Tabular
decision descriptions offer a certain degree of freedom
for the decision documenters, because description ele-
ments can easily be added or left out. An additional
benefit is their suitability for simple automated support
such as through spreadsheets or wiki-type information

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 17

systems, which offer out-of-the-box support for creat-
ing tables and linking textual elements to each other. No
extra notations or special tools are needed to document
decisions in textual form. However, decision tables tend
to become very large and contain a lot of text. When
many decisions are documented for one system, the
overview of these decisions gets lost. Using templates, it
is also challenging to visualize or trace complex relation-
ships between decisions and to perform impact analyses.
Especially for non-technical stakeholders and managers,
long architecture documentation may seem daunting,
which discourages them from reading the documenta-
tion.The details captured using decision templates are of
paramount importance for framing a number of concerns.
We have thus decided to include a viewpoint, the Decision
Detail viewpoint, that uses a decision template similar
to Tyree and Akerman (2005). The views resulting from
applying this viewpoint are especially important to record
rationale for decisions. However, as mentioned before,
they are not sufficient. Additional views are needed to
provide an overview of the decisions made and to empha-
size concerns that can hardly be satisfied in a table or
catalog, e.g., decision relationships, decision chronology
and the impact of decisions on stakeholders, on the archi-
tecture or on other decisions.

Annotations: Other approaches document architecture decisions
using annotations (see for instance the Knowledge Archi-
tect Suite, Liang et al., 2009). The respective tools allow
users to attach “comments” to other architecture descrip-
tions such as to UML or ADL models or to natural language
text in text processing applications. They highlight ele-
ments as decisions and additionally capture relations,
attributes, and the history of decisions. An advantage
of using annotations is that architects and other stake-
holders need not learn new tools to document decisions.
Different stakeholders can typically use their preferred
tools and attach annotations through specialized plu-
gins to those tools. Furthermore, annotations are very
well suited to elicit architecture decisions from existing
project documentation. On the other hand, annotations
from different tools must be combined with an addi-
tional decision management or documentation approach
that allows one to consume decisions without browsing
multiple documents using multiple tools. Additionally,
annotations do not provide instant support for the anal-
ysis of decision relationships, lifecycle management and
consistency checks. This must be accomplished by addi-
tional tools collecting the annotated information and
preparing them for further analysis (e.g., the Microsoft
Word plugin used in Liang et al., 2009). The elicited
decisions from an annotation approach can serve as the
raw data basis for creating decision views conforming to
architecture decision viewpoints. Therefore annotation
approaches are complementary to the proposed decisions
viewpoints.

Decision models: Decision models can present the same
information as template-based and annotation-based
approaches, but use dedicated models to represent deci-
sions. Existing models within an architectural view are
complemented with a decision model, which addresses
decision-related concerns specific to the particular view
(Kruchten et al., 2009; Dueñas and Capilla, 2005; Capilla
et al., 2007). For example, in an architecture description
following the 4+1 view model, a decision model in the
deployment view would contain decisions about system
deployment.This approach provides a better overview

of decisions than the aforementioned approaches and
facilitates linking decisions to other architecture descrip-
tion elements. However, the problem remains that
the existing approaches on decision models are dedi-
cated to existing architectural viewpoints. The concerns
addressed by the models are the same (or a subset of)
concerns that are addressed by the viewpoint they are a
part of; thus are system concerns. We, however, argue
that beyond system concerns, architecture decision doc-
umentation must address additional concerns specific to
architecture decisions. Nevertheless, architecture deci-
sion models can be complemented with our decision
views if appropriate means for consistency among the
decisions are taken. Additionally, the decisions from the
decisions models can serve as a basis for further architec-
ture decision elicitation.

5.2. Architecture decision views

The idea of introducing a dedicated decision view3 to com-
plement the traditional architectural views (e.g., the 4+1 view
model Kruchten, 1995) has been proposed by Kruchten, Capilla
and Dueñas (Kruchten et al., 2009; Dueñas and Capilla, 2005).
They emphasize the importance of documenting design rationale
as a part of architecture decision documentation in architecture
practice and identify a set of challenges and benefits of decision
documentation. However, no concrete guidance is provided on how
to define and construct decision views that integrate with view-
based architecture documentation (ISO, 2011). The documentation
framework presented in this paper addresses many of the chal-
lenges identified in Kruchten et al. (2009) and gives concrete advice
on how to construct a set of consistent architecture decision views.

Various authors have proposed tools to visualize architectural
design decisions (for a comparison of current toolsets, see Shahin
et al., 2010). Graphical representations of decisions support stake-
holders in understanding the architecture, as they allow them
to visually inspect the architecture (Shahin et al., 2010; Lee and
Kruchten, 2008).

Some tools allow visualizing architecture decisions from dif-
ferent perspectives. A perspective, in this context, is a graphical
representation of decisions suitable to address a set of decision-
related concerns. While the idea of showing different perspectives
of decisions has commonalities with the concept of multiple archi-
tecture decision viewpoints, it is not sufficient in isolation. A
viewpoint is more than a perspective on architecture decisions,
as it must provide concrete guidance on how to construct views,
and it must ensure inter-model and inter-view consistency. Most
importantly, it must integrate with other views used to document
architecture. Our work is complementary to the tools analyzed in
Shahin et al. (2010); in fact, the creation of multiple views on deci-
sions is only feasible in practice if appropriate tooling is provided to
support the architects. This became evident in our case study. Iden-
tifying the best technique used to visualize the views presented in
this paper is, however, subject to further research. Candidate tech-
niques should adhere to viewpoint definitions and be validated in
industrial case studies.

3 An early draft of IEEE 1471 (version D1.0, dated February 1998) contained a
decision viewpoint, described as: “The decision viewpoint documents the decisions
about the selection of elements or characteristics. This viewpoint records the ratio-
nale for architectural choices. Typical models include: mission utility, cost/capability
tradeoffs, element performance tradeoffs”. However, all predefined viewpoints were
removed from the standard before the final publication, leaving definition of view-
points to its end users.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

18 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

6. Conclusions and future work

In this paper, we introduced a documentation framework
for architecture decisions consisting of four initial viewpoint
definitions and the respective correspondence rules to ensure
consistency among them. The four viewpoints, a Decision Detail
viewpoint, a Decision Relationship viewpoint, a Decision Chronol-
ogy viewpoint and a Decision Stakeholder Involvement viewpoint,
satisfy several stakeholder concerns related to architecture deci-
sion management. Furthermore, they can easily be integrated with
other viewpoints to complete the picture of architectural design,
decisions and rationale.

With the exception of the Decision Stakeholder Involvement
viewpoint, we validated the framework in an industrial case study
and showed that the views can be created with reasonable effort.
Furthermore, we showed that decision views facilitate communica-
tion between stakeholders, support technical architecture reviews
and enable the reuse of architecture decisions. Although we could
only find evidence for the suitability for technical architecture
reviews in the case study, we believe that decision viewpoints are
equally beneficial for non-technical architecture reviews and eval-
uations. We are currently planning a study to provide empirical
evidence for this assumption.

The framework presented in this paper comprises a coherent
set of viewpoints that can be used as-is to document architecture
decisions. However, our analysis of stakeholder concerns related to
decision documentation (see Section 2) showed that some concerns
cannot be satisfied optimally within the current set of viewpoints.
In particular, concerns related to decision-requirements traceabil-
ity and decision-design traceability (C6, C7, C12) in Table 1 are
currently under-represented and require additional research. To
partially bridge this gap, we are working on an additional view-
point focussing on the representation of the relationships between
architecture decisions and system concerns. In this so-called deci-
sion forces viewpoint, we represent decisions and the forces that had
an influence on the decision-making process. These forces include
traditional functional and non-functional requirements, but they
also take the experience and expertise of the development team, as
well as business and projects constraints into account.

Another direction for future research is applying the documen-
tation framework for creating views in different orders and at
different levels of detail. When applying our viewpoints in dif-
ferent projects and different organizational contexts, we observed
that the viewpoints can be used in different ways. To give an
example, in one project the decision detail view of architecture
decisions was created on-the-fly during the decision making itself.
This resulted in all decisions being documented with the same
effort and the same information density. The decision relation-
ship view was created after-the-fact at the end of the architecture
phase. In another project, the relationship and chronological views
were created on-the-fly during the architecting process, while only
the most important decisions were thoroughly documented in the
detail view afterwards. We plan to analyze the different ways of
using the viewpoints in more industrial projects to come up with
parameterized guidelines on how to construct the views in different
organizational settings.

Finally, as mentioned before, effective tooling is vital for using
viewpoints in the industry. We developed an open source web
application (Open Decision Repository) to create views accord-
ing to this viewpoint framework. Currently, the Decision Detail,
Decision Relationship and Decision Chronology viewpoints are
supported by the tool. The source code and documentation is
located in a Google code repository and can be found under
http://opendecisionrepository.googlecode.com. We are currently
evaluating the Open Decision Repository in an industrial study as a
pilot for larger-scale empirical validation.

Acknowledgements

We thank the following people for their valuable input and
contribution: Stefan Arians, Dirk Bugzel, Mathias Deml, Chris-
tian Dietrich, Veli-Pekka Eloranta, Matthias Galster, Kai Koskimies,
Christian Manteuffel, Dominique Petersen, Ben Ripkens, Christian
Rossow, Sebastian Schmidt, Michael Stal, Martin Verspai, and the
participants of the OPR software factory 2011.

We would also like to thank the anonymous reviewers of JSS,
whose comments on this paper helped us to improve it.

Appendix A. Concern analysis

Table A.1 shows the outcome of the concern analysis described
in Section 2.

Each row contains an architectural knowledge management
(AKM) use case elicited from the literature (Liang et al., 2009;
Kruchten et al., 2006; Jansen et al., 2007), the concerns derived
from these use cases (please refer to Table 1 for a description of
the concerns), and typical stakeholders having those concerns for
architecture documentation. Additionally, the table indicates how
the concerns were derived (column DER). The table is ordered by
the publications, from which the use cases were elicited.

The following activities were used to derive concerns:

• Derive (DER): A concern or a set of concerns was derived from a
decision-related use case.

• Project (PRJ): A use case that does not directly involve architec-
tural decisions was projected to architectural decision concerns.

• Complement (COM): A new concern was introduced to comple-
ment concerns derived from a use case.

The analysis was done by the three authors. In cases where the
three authors identified different concerns, a discussion took place
to reach consensus.

Appendix B. Decision views from the case study

See Figs. B.1–B.3

Appendix C. Viewpoint definitions and correspondence
rules

C.1. Decision framework metamodel

Fig. C.1 shows a shared metamodel for the decision viewpoint
elements. The metamodel is not specific to one particular view-
point; instead it is common to all decision viewpoints introduced
in this paper. Elements with a gray background map to the cor-
responding elements in Figs. 2 and 4 of ISO/IEC/IEEE 42010 (ISO,
2011). Therefore, the architecture description elements used in
the architecture decision viewpoints (white background) integrate
seamlessly into the conceptual framework of the standard.

A shared metamodel, together with well-defined constraints
and correspondence rules, can ensure consistency among the views
from different viewpoints. The intra-model constraints will be
defined later, as a part of the viewpoint definitions. Additionally,
inter-model and inter-view correspondence rules will be defined
then to ensure consistency between the views.

C.2. Decision Relationship viewpoint

As mentioned in Section 3, the relationship viewpoint describes
relationships between architectural design decisions. Table 4

dx.doi.org/10.1016/j.jss.2011.10.017
http://opendecisionrepository.googlecode.com

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 19

Table A.1
Decision concerns derived from use cases.

Use case Derived concerns DER Typical stakeholders

If we want to do a change in an element, what are the elements
impacted (decisions, and elements of design) (Kruchten et al., 2006)

C13 PRJ Architects

Find out if multiple systems can be combined (migrated) (Kruchten
et al., 2006)

C15, C14, C9, C8 PRJ, COM Architects, Reviewers

From a given perspective (such as security, safety, reuse, etc.) what are
the knowledge elements involved? (Kruchten et al., 2006)

C6 PRJ Architects, Reviewers,
Customers, Requirements
engineers

You want to integrate multiple systems and decide whether they fit.
The tool would help answering questions about integration
strategies (Kruchten et al., 2006)

C15, C14, C9, C8 PRJ, COM Architects, Reviewers

What pieces of Architectural Knowledge have been added or modified
since the last review? (Kruchten et al., 2006)

C21, C22 PRJ, COM Architects, Reviewers

The architect makes sure that all the dependencies of removed AK (i.e.,
the consequences of an architectural decision) have been removed
as well (Kruchten et al., 2006)

C11, C22, C8 PRJ, COM Architects, Reviewers

What pieces of Architectural Knowledge have been added or modified
since the last review? (Kruchten et al., 2006)

C21 PRJ Architects, Reviewers

Over a time line, find what the sequence of design decisions has been
(Kruchten et al., 2006)

C20 DER Architects, Reviewers, New
Project Members

Identify decisions being hubs (god decisions) (Kruchten et al., 2006) C10, C12 DER, COM Architects, Reviewers
Identify circular dependencies (Kruchten et al., 2006) C10 DER Architects, Reviewers
Identify decisions that gain weight over time and are more difficult to

change or remove (Kruchten et al., 2006)
C10, C21 DER, COM Architects, Reviewers

Identify the stakeholder who seems to have the most “weight” on the
decisions, and who therefore maybe the one that could be most
affected by the future evolution of the system (Kruchten et al., 2006)

C16, C18, C19, C17 DER, COM Architects, Reviewers, Manager

Identify who are the stakeholders whose changes of mind are doing
the most damage to the system (Kruchten et al., 2006)

C18, C21, C22 PRJ, COM Architects, Reviewers,
Managers

Identify patterns in the decision graphs that can be a useful fashion
and lead to guidelines for the architects (Kruchten et al., 2006)

C23, C5 DER, COM Architects, Reviewers, Domain
Experts

Trace between various AK elements, e.g. design decisions, rationale,
and design (Liang and Avgeriou, 2009)

C11, C6, C4, C3,
C19, C5, C17

PRJ, COM Architects, Reviewers,
Customers, Requirements
engineers, New Project
Members

The reviewer performs a critical evaluation of the AK, e.g. to make sure
that requirements have been satisfied in the architecture design
(Liang and Avgeriou, 2009)

C6, C7, C4, C3, C2 PRJ, COM Architects Reviewers,
Customer, New Project
Members

Perform an evaluation of architectural knowledge (Liang and Avgeriou,
2009)

C4, C3, C5 PRJ, COM Architects, Reviewers,
Customers, New Project
Members

The architect evaluates when the architecture can be considered as
finished, complete, and consistent, e.g. verify whether a system
conforming to the architecture can be made or bought (Liang and
Avgeriou, 2009)

C6, C7, C9, C8, C2 PRJ, COM Architects, Reviewers

Browse architectural knowledge dependencies (Liang and Avgeriou,
2009)

C10 PRJ Architects, Reviewers

Browse architectural knowledge traces (Liang and Avgeriou, 2009) C11, C16, C12, C6,
C4, C8, C19, C5, C17

PRJ, COM Architects, Reviewers,
Customers, Managers

Understand the rationale of a design decision (Liang and Avgeriou,
2009)

C3, C5 DER, COM Architects, Reviewers,
Customers, New Project
Members

Distill specific knowledge from a system into general knowledge (e.g.
architecture pattern) that can be reused in future systems (Liang and
Avgeriou, 2009)

C23, C5 DER, COM Architects, Reviewers, Domain
Experts

Produce a consistent subset of Architectural Knowledge to prime the
pump for a new system (reuse Architectural Knowledge) (Liang and
Avgeriou, 2009)

C23, C5 DER, COM Architects, Reviewers, Domain
Experts

shows the concerns framed by the viewpoint as related to the men-
tioned stakeholders.

C.2.1. Model kind
Fig. C.2 shows a metamodel for the relationship viewpoint. It

documents the model kind, which presents the conceptual ele-
ments for architecture models that adhere to it. It uses the notation
for class diagrams from the Unified Modeling Language. One rela-
tionship view can contain multiple relationship models of this
model kind; however, every decision is represented only once in
a view.

An architecture decision is identified by a short name. Although
an architecture decision has potentially many versions, one for

every state change, the relationship view contains only the current
versions of the decisions shown. A decision has a state, which can
be freely chosen depending on the needs of the respective develop-
ment project. All possible states must be clearly specified prior to
being used. With one exception, we adopt the decision states from
Kruchten’s ontology of architectural design decisions (Kruchten,
2004):

• Idea: This state is used for decisions which are just loose ideas
that architects want to document so that they do not get lost. If a
decision has the idea-state, then it cannot have any relationships
to other decisions.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

20 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Fig. B.1. Partially censored excerpt from a relationship view.

• Tentative: This state is used for decisions which are seriously
considered by the architect.

• Decided: The decision reflects the current position of the archi-
tect and must be consistent with other decided decisions.

• Approved: This state is reached if a previously decided decision
has been confirmed; for instance during a review or a customer
meeting.

• Challenged: This state is applicable, if a stakeholder raises issues
about a previously decided or approved decision.

• Rejected: A rejected decision is a decision that was challenged
and has been removed from the current iteration of the archi-
tecture. For the sake of simplicity, we subsume Kruchten’s
Obsolesced-state under this state as well.

In addition to Kruchten’s states, we define the state discarded. A
discarded decision is a formerly tentative decision that was not

decided, for instance a design option that was not chosen among
the considered alternatives. Fig. C.3 shows the decision states along
with the respective state transitions.

Decisions participate in relationships. Every relationship refers
to exactly two decisions, one source and one target decision. For
instance, decision1 (source) replaces decision2 (target). For the
sake of simplicity, the meta model only takes binary relationships
into account, although in some cases n-ary relationships between
decisions may be useful.

A relationship has a specific relationship type, which again can
be freely chosen, but should be clearly specified. We define the
following relationship types:

• Depends on: If decision B depends on decision A, then B can-
not be decided or approved without A being in that state.
Expressed the other way round, A is a prerequisite for B.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 21

Fig. B.2. Partially censored excerpt from a chronological view.

This relationship includes Kruchten’s cases in which deci-
sion B is part of a decomposition of A, or if B is comprised
by A.

• Caused by: If decision B is caused by decision A, then B would
not have been decided without A being decided. This relationship

expresses causality, without imposing further constraints on the
decisions.

• Is excluded by: Decision A is excluded by decision B if A cannot be
decided as long as decision B is decided. In other words decision
B prevents decision A.

Fig. B.3. A single model (decision) in the detail view from the case study.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

22 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Fig. C.1. Metamodel of decision viewpoints elements.

• Replaces: Decision B replaces decision A, if B was put into practice
instead of A.

• Is alternative for: If decision B is an alternative for decision A,
then B was considered as design option instead of A. Two deci-
sions are alternatives when they address a significant common
set of concerns.

Table C.1 shows a mapping of our types to the relationship types
defined in Kruchten’s ontology (Kruchten, 2004). An arrow after the
relationship type name indicates that the relationship types in that
row are complementary—they may be expressed in either of two
ways: e.g., if decision A was caused by decision B, then decision B
enables decision A.

A decision can belong to zero or more decision groups. This
allows for logical grouping of decisions according to self-defined
characteristics. For instance, decisions could be grouped by subsys-
tem, use-case package, physical location, or component. Decision
groups can have parent groups. This is especially helpful to organize
the documentation of large numbers of decisions. The models in
the relationship view can provide different “scales”, e.g., one model

Fig. C.2. Metamodel of Decision Relationship viewpoint.

showing only the root decision groups and their relationships and
additional models for “zooming into” each of the groups showing
either decisions or subgroups, which themselves contain decisions
or further subgroups.

The following constraints apply to the elements within this
model kind:

1. The architecture decisions shown in one relationship view all
refer to the same point in time.

2. Every decision occurs exactly once.
3. A decision has a unique name and exactly one state.
4. A decision can participate in zero or more relationships.
5. A relationship has exactly one type.
6. A relationship has exactly two non-identical endpoints.
7. A relationship model showing decision groups without asso-

ciated decisions must be refined by one or more additional
relationship models showing which decisions belong to which
decision group.

8. Caused by-relationships cannot point to idea or discarded deci-
sions.

9. Caused by-relationships cannot originate from idea decisions.
10. Depends on-relationships can only point to tentative, decided,

approved or challenged decisions.
11. Depends on-relationships cannot originate from idea decisions.
12. Excluded by-relationships cannot point to idea, tentative, dis-

carded or rejected decisions.

Table C.1
Mapping of relationship types to Kruchten’s ontology.

Used type Kruchten’s type

Caused by No match
Depends on Enables ←

Decomposes
Subsumes ←
Comprises ←

Replaces No match
Is alternative for Is an alternative to
Is excluded by Forbids ←
No match Conflicts with

Constrains ←
Overrides

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 23

Fig. C.3. UML diagram for state changes of architecture decisions.

13. Excluded by-relationships can only originate from idea, tenta-
tive, discarded or rejected decisions.

14. Replaces-relationships can only point to rejected decisions.
15. Replaces-relationships cannot originate from idea decisions.
16. Alternative for-relationships cannot point to idea or discarded

decisions.
17. Alternative for-relationships can only originate from tentative

or discarded decisions.

Note that the presented constraints refer to the used decision
states and relationship types. If different states or relationship
types are used, then the constraints must be revised accordingly. In

addition to the internal model constraints presented above, cross-
viewpoint correspondence rules exist. These rules will be presented
in Appendix C.6.

C.3. Decision Chronological viewpoint

This viewpoint shows the evolution of architecture decisions
in chronological order. Table 6 shows the concerns framed by this
viewpoint related to the respective stakeholders.

C.3.1. Model kind
Fig. C.4 shows a metamodel for the chronological viewpoint.

It documents the model kind, which presents the conceptual ele-
ments for architecture models that adhere to it. Again, the notation
for UML class diagrams is used. An architecture decision is made
or changed (i.e., a state change) within an architecture iteration.
We define iterations as versions of the architecture as a whole. An
iteration endpoint has a date and furthermore a type that can be
freely chosen. We propose the following three predefined types:

Milestone: A version of the architecture that has reached a stable
state (or an intermediate stable state).

Release: A version of the architecture that is delivered to a cus-
tomer or made available to the public for use.

Snapshot: A snapshot can be incomplete and possibly inconsis-
tent. This iteration endpoint can be used to express that a
customer or project team meeting took place where some
decisions were made or discussed without ending up with
a stable iteration version.

The following constraints apply to the elements within this
model kind:

1. Every decision has a unique name and exactly one state at a time.
2. Every decision can take role A in zero or more relationships (role

B is followed by role A).
3. Every decision can take role B in zero or more relationships (role

B is followed by role A).
4. Every relationship has the type followed by.
5. Every relationship has exactly two non-identical endpoints.
6. Decision states can only change in conformance to the state dia-

gram shown in Fig. C.3.
7. Every iteration has exactly one endpoint with a unique name

(e.g. Iteration 4).

Fig. C.4. Metamodel of chronological viewpoint.

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

24 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

Fig. C.5. Metamodel of stakeholder involvement viewpoint.

8. Concurrent decision paths (e.g. by different architects making
decisions autonomously in the same project) cannot cross the
boundaries of iterations (marked by an iteration endpoint).

In addition to the internal model constraints presented above,
cross-viewpoint correspondence rules exist. These rules will be
presented in C.6. An extract of a model that corresponds to this
model kind is shown in Fig. 5.

C.4. Decision Stakeholder Involvement viewpoint

The stakeholder involvement viewpoint shows the responsi-
bilities of relevant stakeholders in the decision-making process.
Table 5 shows the concerns framed by this viewpoint related to
the respective stakeholders.

C.4.1. Model kind
Fig. C.5 shows a meta model for the stakeholder involve-

ment viewpoint. It documents the model kind, which presents
the conceptual elements for architecture models that adhere to it.
Corresponding elements of the chronological metamodel have the
same semantics as in that viewpoint. Every architecture decision is
caused by at least one action performed by a stakeholder. In larger
projects, the stakeholder can comprise a group or organization, e.g.
a development team or a department in a company. The actions
can be adapted to the needs of a concrete software project. In our
examples we use the following actions:

formulate: A decision is documented as a rough idea that should
be revisited in the future. The corresponding decision
state is idea.

propose: A new decision or a set of new decisions is proposed by
an architect. The corresponding decision state is tentative.

discard: A tentative decision is discarded by an architect. The
corresponding decision state is discarded. A discarded
decision has never reached a state higher than tentative.

validate: A decision or a set of decisions is validated by a stake-
holder. The corresponding decision state is decided.

confirm: A decision or a set of decisions is confirmed by a stake-
holder on the customer site. The corresponding decision
state is approved. This action can be performed on a chal-
lenged decision to (re-)confirm it or on a decided decision.

challenge: A decision or a set of decisions is challenged by a stake-
holder. The corresponding decision state is challenged.

reject: A decision that was approved before is rejected. The cor-
responding decision state is rejected.

Fig. C.3 shows stakeholder actions and corresponding decision
state transitions.

A stakeholder can have one or more roles in a project. The roles
depend on the circumstances in a concrete project. They must be
clearly defined prior to being used. We used the following stake-
holder roles:

architect: A person or organizational unit responsible for making
architecturally relevant decisions in a project.

manager: A person or organizational unit who is responsible for
the project in a company.

customer: A person or organizational unit serving as customer
representative who is in charge of confirming architecture
decisions.

The following constraints apply to the elements of this model
kind:

1. Every decision has a unique name.
2. Every iteration endpoint has a unique name.
3. All decision versions changed in one iteration are shown.
4. Only one version of a decision is shown in one model.
5. Every stakeholder has a unique name and zero or more stake-

holder roles.
6. Every stakeholder shown performed at least one action.
7. Every action has exactly two non-identical endpoints.
8. Every action originates from exactly one stakeholder in a role.
9. Every action points to a decision, or an iteration endpoint. If the

target is an iteration endpoint, then the corresponding action
is performed for all decisions (respectively decision versions)
changed in that iteration.

In addition to the internal model constraints presented above,
cross-viewpoint correspondence rules exist. These rules will be
presented in C.6. An example of a model that corresponds to this
model kind is shown in Fig. 4.

C.5. Decision Detail viewpoint

The Decision Detail viewpoint provides an in-depth textual
description of each architecture decision documented in a soft-
ware project. Table 3 shows the concerns framed by this viewpoint
related to the respective stakeholders.

C.5.1. Model kind
The metamodel for the Decision Detail viewpoint is identical

to the shared metamodel for all viewpoints shown in Fig. C.1. In
addition to the elements that were already described in the other
viewpoint definitions, the model contains a relationship between
architecture decision and system concerns. Every architecture deci-
sion is represented by exactly one decision detail model. The total
of decision detail models shows every architecture decision docu-
mented for a system. An example of a model that corresponds to
this model kind is shown in Fig. 2.

C.6. Correspondences between viewpoints

The documentation framework for architecture decisions is
comprised of four viewpoints. A view conforming to one of these
viewpoints is composed of one or more models. The fact that

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 25

the same subject is represented in multiple independent models
creates the risk of inconsistencies. The new ISO/IEC/IEEE 42010
standard for architecture documentation introduces correspon-
dences to express cross-model relationships between architecture
description elements (ISO, 2011). In the following, we define a
number of correspondence rules, which have to be observed by
views of the respective viewpoints in order to be consistent. In
combination with the correspondence rules, we use a shared meta-
model for all model kinds to ensure cross-model consistency. The
shared metamodel was introduced in Appendix C.1. The correspon-
dence rules are expressed in terms of constraints and relationships
of the architecture models and description elements defined in
the metamodel. Note that some of the rules are only applicable
if the framework is used as a whole. If the framework or indi-
vidual viewpoints are customized, then the rules must be revised
accordingly.

With the exception of the chronological view, all views are
comprised of one or more models. A chronological view com-
prises one model showing the evolution of all decisions made
in the system to document. Please refer to the respective view-
point sections for more information about internal viewpoint
constraints.

R1: The total number of relationship models contains all
latest versions of every architecture decisions made
in a system. The latest versions must correspond to
the latest occurrence of a decision in the chronological
model.

R2: A stakeholder involvement model must exist for every
iteration shown in the chronological model. Every stake-
holder involvement model must contain the versions of
architecture decisions belonging to the respective itera-
tion.

R3: A decision detail model contains all incoming and outgo-
ing relationships of a decision shown in the relationship
models.

R4: The current state of a decision in the decision detail model
must correspond to the state of the latest occurrence of
the decision in the chronological model.

R5: The alternatives mentioned in one decision detail model
must be identical to the decisions in the relationship view
having an is alternative for relationship pointing to the
decision represented in the model.

R6: The history of a decision represented in the decision detail
model must contain all stakeholder actions performed
on that decision shown in all stakeholder involvement
models.

Appendix D. Example of qualitative analysis process

In Section 4, we described the procedure used to qualitatively
analyze parts of the data gathered in the case study. In the follow-
ing, an example of the analysis process is given. It is taken from
the transcript of the focus group conducted after the architecture
review. It was chosen because it reflects the typical procedure we
used for the qualitative analysis.

Original comment given by one of the domain experts: “I liked
the relationship view. I could make use of it quite well. Especially
the relationships and what would happen if I changed something. I
think this is more clearly illustrated than in any table. This is great
progress and I was clearly impressed.”

This passage was labelled with Research question two and rela-
tionship view. It is noticeable that the comment is hard to interpret
when taken out of the context. The commenter is referring to the
relationship view of the sandnet project, which he was showing
to the other participants while talking. He mentions the different

relationships between decisions and emphasizes that the relation-
ships can be used to analyze which decisions would be impacted
if a specific decision changed. Then he compares the relationship
view with a “table”. Here he refers to a decision table, which strictly
speaking is a model in a decision detail view. From this comment
we derived the following statements:

• Relationship views illustrate the relationships between decisions.
• Relationship views support impact analysis.
• Relationship views illustrate decision relationships better than

decision detail views.

Appendix E. Question guide used during the focus group

The following set of questions was used as orientation by the
moderator of the focus group, which took place after the review.
Please note that the questions were not necessarily asked by the
moderator, nor were they answered in a specific order. During an
open discussion between the participants, the moderator made
sure that the participants gave enough information so that the
questions could be answered. The focus group data collection
method was described in Section 4.2.2.

• How did the views support the participants in understanding the
architecture?
– Which information were they missing?
– Which information did they get?

• How did the views help them to communicate architecture, what
was missing?

• How do they usually document architecture?
– What are the liabilities and benefits of the decision views com-

pared to their usual way of doing it?
• Which concerns do they have in architecture documentation in

general?
– How did the relationship view support them, what was miss-

ing?
– How did the chronological view support them, what was miss-

ing?
– How did the documented decisions support them, what was

missing?
• Which concerns do the participants have in architecture docu-

mentation when starting a new project?
– How did the relationship view support them, what was miss-

ing?
– How did the chronological view support them, what was miss-

ing?
– How did the documented decisions support them, what was

missing?
• Which concerns do they have in architecture documentation

when doing architecture reviews? For identifying decisions/
sensitivity points/trade-off points and risks?
– How did the relationship view support them, what was miss-

ing?
– How did the chronological view support them, what was

missing?
– How did the documented decisions support them, what was

missing?
• Which concerns do they have in architecture documentation dur-

ing architecture evolution?
– How did the relationship view support them, what was

missing?
– How did the chronological view support them, what was miss-

ing?
– How did the documented decisions support them, what was

missing?

dx.doi.org/10.1016/j.jss.2011.10.017

Please cite this article in press as: van Heesch, U., et al., A documentation framework for architecture decisions. J. Syst. Software (2011),
doi:10.1016/j.jss.2011.10.017

ARTICLE IN PRESSG Model
JSS-8817; No. of Pages 26

26 U. van Heesch et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

References

Babar, M.A., Dingsyr, T., Lago, P., van Vliet, H., 2009. Software Architecture
Knowledge Management: Theory and Practice. Springer Publishing Company,
Incorporated.

Bosch, J., 2004. Software architecture: the next step. In: Software architecture, First
European Workshop (EWSA), (3047 of LNCS:194–199).

Capilla, R., Nava, F., Dueñas, J.C.,2007. Modeling and documenting the evolution of
architectural design decisions. In: Proceedings of the Second Workshop on SHAr-
ing and Reusing architectural Knowledge Architecture, Rationale, and Design
Intent. IEEE Computer Society, p. 9.

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R., 2002. Docu-
menting Software Architectures: Views and Beyond. Pearson Education.

University of Groningen, Software Engineering and Architecture Group, The Open
Pattern Repository. http://code.google.com/p/openpatternrepository/, February
2011.

Dueñas, J., Capilla, R., 2005. The decision view of software architecture. In: Morrison,
R., Oquendo, F. (Eds.), Software Architecture, volume 3527 of Lecture Notes in
Computer Science. Springer, Berlin/Heidelberg, pp. 88–126.

Glaser, B.G., Strauss, A.L., 1967. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Publishing, New York.

Gray, D.E., 2009. Doing Research in the Real World. Sage Publications Ltd.
IEEE. IEEE Std 1471-2000, IEEE Recommended Practice for Architectural Description

of Software-Intensive Systems, October 2000.
IEEE, 2008. IEEE Std 1028-2008, IEEE Standard for Software Reviews and Audits.
ISO, May 2011. Systems and Software Engineering – Architecture Description.

ISO/IEC/IEEE 42010, pp. 1–46.
Jansen, A., Bosch, J.,2005. Software architecture as a set of architectural design deci-

sions. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture. IEEE Computer Society, pp. 109–120.

Jansen, A., van der Ven, J., Avgeriou, P., Hammer, D.K.,2007. Tool support for archi-
tectural decisions. In: Proceedings of the Sixth Working IEEE/IFIP Conference on
Software Architecture. IEEE Computer Society, p. 4.

Kontio, J., Lehtola, L., Bragge, J.,2004. Using the focus group method in software
engineering: obtaining practitioner and user experiences. In: Proceedings of
the 2004 International Symposium on Empirical Software Engineering. IEEE
Computer Society, pp. 271–280.

Kruchten, P., Lago, P., van Vliet, H., 2006. Building up and reasoning about archi-
tectural knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (Eds.), Quality
of Software Architectures, volume 4214 of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg, pp. 43–58.

Kruchten, P., Capilla, R., Dueñas, J.C., 2009. The decision view’s role in software
architecture practice. IEEE Software 26 (2), 36–42.

Kruchten, P., 1995. The 4+1 View Model of architecture. IEEE Software 12 (6), 42–50.
Kruchten, P., 2004. An ontology of architectural design decisions in software inten-

sive systems. In: Proceedings of the 2nd Groningen Workshop on Software
Variability, pp. 54–61.

Lee, L., Kruchten, P.,2008. A tool to visualize architectural design decisions. In:
Proceedings of the 4th International Conference on Quality of Software-
Architectures: Models and Architectures. Springer-Verlag, pp. 43–54.

Lethbridge, T.C., Sim, S.E., Singer, J., 2005. Studying software engineers: data collec-
tion techniques for software field studies. Empirical Software Engineering 10,
311–341.

Liang, P., Avgeriou, P.,2009. Tools and technologies for architecture knowledge
management. In: Software Architecture Knowledge Management: Theory and
Practice. Springer, pp. 91–111.

Liang, P., Jansen, A., Avgeriou, P., February 2009. Knowledge Architect: A Tool
Suite for Managing Software Architecture Knowledge. Technical Report RUG-
SEARCH-09-L01, SEARCH Group, University of Groningen, The Netherlands.

Mack, N., Woodsong, C., MacQueen, K.M., Guest, G., Namey, E., 2005. Qualitative
Research Methods: A Data Collector’s Field Guide. FLI.

MacLean, A., Young, R.M., Bellotti, V.M.E., Moran, T.P., 1991. Questions, options, and
criteria: elements of design space analysis. Human–Computer Interaction 6 (3),
201–250.

University of Groningen, Software Engineering and Architecture Group, The Open
Decision Repository. http://opendecisionrepository.googlecode.com, February
2011.

Perry, D.E., Wolf, A.L., 1992. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17 (4), 40–52.

Robson, C., 2002. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Wiley–Blackwell.

Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,
N., 2011. Sandnet: network traffic analysis of malicious software. In: Building
Analysis Datasets and Gathering Experience Returns for Security.

Rozanski, N., Woods, E., 2005. Software Systems Architecture: Working with Stake-
holders using Viewpoints and Perspectives. Addison-Wesley Professional.

Runeson, P., Hoest, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14, 131–164.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software engineer-
ing. IEEE Transactions on Software Engineering 25 (4), 557–572.

Shahin, M., Liang, P., Khayyambashi, M.R.,2009. Architectural design decision:
existing models and tools. In: European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on Software Architec-
ture, 2009. IEEE, pp. 293–296.

Shahin, M., Liang, P., Khayyambashi, M.R.,2010. Improving understandability of
architecture design through visualization of architectural design decision. In:
Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge. ACM, pp. 88–95.

Stake, R.E., 1995. The Art of Case Study Research. Sage Publications, Inc.
Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M., 2010. A comparative study

of architecture knowledge management tools. Journal of Systems and Software
83 (3), 352–370.

Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying architecture. IEEE
Software 22 (2), 19–27.

Williams, R.C., Pandelios, G.J., Behrens, S.G., 1999. Software Risk Evaluation
(SRE) Method Description (Version 2.0). Technical Report CMU/SEI-99-TR-029,
ESC-TR-99-029, Software Engineering Institute, Carnegie Mellon University,
December 1999.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.

Wohlin, C., Hoest, M., Henningsson, K., 2003. Empirical research methods in software
engineering. In: Conradi, R., Wang, A. (Eds.), Empirical Methods and Studies
in Software Engineering, volume 2765 of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg, pp. 145–165.

Yin, R.K., February 2003. Case Study Research: Design and Methods, Applied Social
Research Methods Series, vol. 5, third edition. Sage Publications, Inc.

Uwe van Heesch is a lecturer for Software Engineering at the Fontys University
of Applied Sciences in Venlo, the Netherlands. He is currently pursuing a Ph.D.
at the Software Engineering research group at the University of Groningen, the
Netherlands. His primary research domain is software architecture, particularly
architecture decision management and architecture design reasoning. He is also
an active member of the European software patterns community.

Dr. Paris Avgeriou is Professor of Software Engineering in the Department of Math-
ematics and Computing Science, University of Groningen, the Netherlands where
he has led the Software Engineering research group since September 2006. Before
joining Groningen, he was a post-doctoral Fellow of the European Research Consor-
tium for Informatics and Mathematics (ERCIM). He has participated in a number of
national and European research projects directly related to the European industry of
Software-intensive systems. He has co-organized several international workshops,
mainly at the International Conference on Software Engineering (ICSE). He sits on
the editorial board of Springer Transactions on Pattern Languages of Programming.
He has published more than 90 peer-reviewed articles in international journals,
conference proceedings and books. His research interests lie in the area of software
architecture, with strong emphasis on architecture modeling, knowledge, evolution
and patterns.

Rich Hilliard is a freelance software architect and software engineer. He’s also editor
of ISO/IEC 42010, Systems and Software Engineering—Architecture Description (the
internationalization of the widely used IEEE Std 1471:2000). Hilliard is a member of
the IFIP Working Group 2.10 on software architecture, the IEEE Computer Society,
and the Free Software Foundation, and is an officer of the League for Programming
Freedom.

dx.doi.org/10.1016/j.jss.2011.10.017
http://code.google.com/p/openpatternrepository/
http://opendecisionrepository.googlecode.com

	A documentation framework for architecture decisions
	1 Introduction
	2 Concerns related to architecture decisions
	3 A framework for architecture decision documentation
	3.1 Decision Detail viewpoint
	3.2 Decision Relationship viewpoint
	3.3 Decision Stakeholder Involvement viewpoint
	3.4 Decision Chronological viewpoint

	4 A case study
	4.1 Study goal, research questions and variables
	4.1.1 RQ1 – What is the effort of documenting architecture decisions using architecture decision viewpoints?
	4.1.2 RQ2 – Do decision views effectively support stakeholders to understand the architecture?
	4.1.3 RQ3 – Do decision views effectively support architecture reviews?
	4.1.4 RQ4 – Do decision views support architects to distill reusable decision sub-graphs

	4.2 Study design and execution
	4.2.1 Case description
	4.2.2 Data collection

	4.3 Analysis
	4.3.1 Analysis RQ1 – What is the effort of documenting architecture decisions using architecture decision viewpoints?
	4.3.2 Analysis RQ2 – Do decision views effectively support stakeholders to understand the architecture?
	4.3.3 Analysis RQ3 – Do decision views effectively support technical architecture reviews?
	4.3.4 Analysis RQ4 – Do decision views support architects to distill reusable decision sub-graphs?

	4.4 Interpretation
	4.4.1 Interpretation RQ1
	4.4.2 Interpretation RQ2
	4.4.3 Interpretation RQ3
	4.4.4 Interpretation RQ4
	4.4.5 Threats to validity

	5 Related work
	5.1 Decision documentation approaches
	5.2 Architecture decision views

	6 Conclusions and future work
	Acknowledgements
	Appendix A Concern analysis
	Appendix B Decision views from the case study
	Appendix C Viewpoint definitions and correspondence rules
	C.1 Decision framework metamodel
	C.2 Decision Relationship viewpoint
	C.2.1 Model kind

	C.3 Decision Chronological viewpoint
	C.3.1 Model kind

	C.4 Decision Stakeholder Involvement viewpoint
	C.4.1 Model kind

	C.5 Decision Detail viewpoint
	C.5.1 Model kind

	C.6 Correspondences between viewpoints

	Appendix D Example of qualitative analysis process
	Appendix E Question guide used during the focus group
	References

