
Forces on Architecture Decisions – A Viewpoint
Uwe van Heesch

University of Groningen,
Fontys University of Applied Sciences

Venlo, The Netherlands
uwe@vanheesch.net

Paris Avgeriou
University of Groningen

Groningen, The Netherlands
paris@cs.rug.nl

Rich Hilliard
Freelance software systems architect

USA
r.hilliard@computer.org

Abstract— In this paper, the notion of forces as influences upon
architecture decisions is introduced. To facilitate the documenta-
tion of forces as a part of architecture descriptions, we specify a
decision forces viewpoint, which extends our existing framework
for architecture decisions, following the conventions of the inter-
national architecture description standard ISO/IEC/IEEE 42010.
The applicability of the viewpoint was validated in three case
studies, in which senior software engineering students used
it to document decisions in software projects; two of which
conducted for industrial customers. The results show that the
forces viewpoint is a well-received documentation approach,
satisfying stakeholder concerns related to traceability between
decision forces and architecture decisions.

I. INTRODUCTION

Decisions, and the rationale for those decisions, are perva-
sive elements of software architecture [1]. Because of their
crucial role, architecture decisions and rationale need to be
captured and managed throughout the lifetime of a software
architecture, as with any other important part of the architec-
ture documentation. Moreover, decisions and their rationale
should be documented in a form that integrates with the
documentation of other types of architecture information in
order to provide traceability between decisions and those other
types.

Kruchten proposed to capture the rationale behind an ar-
chitecture using architecture decisions as first-class entities
of architecture description [1]. To date, different approaches
have been presented to practically realize the documentation
of architecture decisions; prominent among those are decision
templates, as introduced by Tyree and Akerman [2] (see [3] for
a discussion of various decision documentation approaches).

ISO/IEC/IEEE 42010 [4] addresses the areas of recording
architecture decisions and architecture rationale as part of
an architecture description, specifying general requirements
for decision documentation, but not particular mechanisms.
As with any other kind of architecture information, architec-
ture decisions and rationale pertain to different stakeholders’
concerns. Consequently, a single form of representation is
often not applicable to all concerns in a usable form; instead
different forms of representation, arranged as architecture
views, can each effectively address a subset of concerns.

Since the earliest work on the foundations of software archi-
tecture by Perry and Wolf [5], and exemplified by Kruchten’s
4+1 model [6], the idea of documenting software architecture
using multiple views has been widely adopted. IEEE Std

1471:2000 [7] first codified this practice of multiple views,
with each view addressing specific concerns of interest to
system stakeholders and introducing viewpoints to establish
the conventions used in each view.

Building on this practice, in our previous work, we intro-
duced a documentation framework for architecture decisions
using the conventions of ISO/IEC/IEEE 42010, containing
an initial set of four viewpoints for architecture decisions: a
decision detail viewpoint, a decision relationship viewpoint,
a decision chronology viewpoint and a decision stakeholder
involvement viewpoint, each dedicated to specific decision-
related concerns [3] (an example of a decision-related concern
is What decisions are dependent on decision D?.)

In this paper, we extend our earlier framework with the
decision forces viewpoint (or shortly forces viewpoint), which
is dedicated to establishing traceability between architecture
decisions, stakeholder concerns and the forces driving the
decisions. Forces, in this context, include traditional require-
ments, but they also take the experience and expertise of the
development team, as well as business and projects constraints,
into account. A force, in short, is a broad concept, capturing
anything that has a potential non-trivial impact of any kind on
an architect when making decisions.

The forces viewpoint was validated in three case studies
conducted with groups of senior students. Two of the groups
worked independently on industrial software projects; the third
group started an open source project as part of a module
on Java EE. The results are promising, as they show that
the forces viewpoint is well-received by the students, while
satisfying many decision-related stakeholder concerns. Further,
we learned that the forces viewpoint supports students in
following a systematic and rational decision making process,
when being created iteratively during the architecting process.

The rest of this paper is organized as follows. Section II
introduces the viewpoint framework and the basic ideas behind
ISO/IEC/IEEE 42010. In Section III, the decision forces
viewpoint is specified. Section IV reports on the case studies
conducted to validate the viewpoint. In the next section,
we briefly outline related work. Finally, in Section VI, we
conclude and present areas for future work.

II. A FRAMEWORK FOR ARCHITECTURE DECISIONS

In this section, the main ideas behind ISO/IEC/IEEE 42010
[4] and the framework for architecture decisions [3], which

were the basis for the development of the decision forces
viewpoint, will be briefly introduced.

A. ISO/IEC/IEEE 42010

ISO/IEC/IEEE 42010 is an international standard for the de-
scription of software architectures (and other kinds of system
architectures). It is based on a few principles:

1) an architecture description (AD) expresses an architec-
ture (of a system or other entity of interest);

2) an AD addresses the concerns of the system’s stakehold-
ers for that architecture.

3) the concerns drive the selection of the representation
conventions (called viewpoints) used to express the ar-
chitecture, each of which is dedicated to framing specific
concerns;

4) consistency between the views is maintained using cor-
respondence rules.

Building upon these principles, ISO/IEC/IEEE 42010 defines
the required contents of individual ADs, the form of architec-
ture description languages, and architecture frameworks.

B. Four viewpoints for architecture decisions

The framework for architecture decisions, introduced in our
previous work [3], consists of an initial set of four viewpoints,
each of which being dedicated to satisfying specific stake-
holder concerns related to architecture decisions.

The decision relationship viewpoint makes relationships
between architecture decisions explicit. Examples of decision
relationships are is caused by, depends on, or is alternative
to. Apart from relationships, views using this viewpoint doc-
ument the current state of each decision in the system (e.g.,
decided, approved, or rejected). The stakeholder involvement
viewpoint explains the responsibilities of specific stakeholders
in the decision-making process. For example, views of this
viewpoint show the stakeholders who proposed, confirmed,
or validated particular decisions. The decision chronologi-
cal viewpoint shows the evolution of architecture decisions
over time. It also depicts architecture iterations and their
endpoints (typically milestones, snapshots, or releases). The
chronological viewpoint is the only viewpoint with a temporal
component. All other types of views freeze a specific state of
the architecture.

Whereas the previously mentioned viewpoints focus on
specific aspects of architecture decisions to optimally frame
their related concerns, the decision detail viewpoint is an
aggregate viewpoint. This viewpoint combines the information
shown in all other viewpoints, by giving detailed information
about single architecture decisions. The detail viewpoint’s
model kind (a model kind establishes the conventions for all
models in the respective view), at the same time, acts as a
shared metamodel for all viewpoints in the framework.

The decision forces viewpoint, introduced in this paper,
extends this existing set of viewpoints focusing on trace-
ability between architecture decisions, stakeholder concerns,
and decision forces. It integrates seamlessly into the decision
framework and its shared metamodel.

III. DECISION FORCES VIEWPOINT

Views using the decision forces viewpoint make explicit the
relationships between architectural decisions and the forces
that influenced the architect when making the decisions out of
multiple alternatives. The term force is taken from the pattern
community, which uses forces to elaborate on the description
of a problem to be solved by a pattern’s proposed solution.
They define a force as “[...] any aspect of the problem that
should be considered when solving it.” [8]. Similarly, when
considering architecture decisions, a force is any aspect of
an architectural problem arising in the system or its envi-
ronment (operational, development, business, organizational,
political, economic, legal, regulatory, ecological, social, etc.),
to be considered when choosing among the available decision
alternatives.

Forces arise from many sources; most often from require-
ments, but also from constraints, architecture principles and
other “intentions” imposed upon the system; including per-
sonal preferences or experience of the architect(s) and the
development team; and business goals such as quick-time-to-
market, low price, or strategic orientations towards specific
technologies (see [9] for an empirical study on influence
factors on software architecture). Before making decisions, the
architect assembles all forces relevant in the context of the
system to be developed. It can be a good practice to maintain
a list of typical domain-specific forces from different projects
to make sure that not important forces are forgotten.

Different forces may be orthogonal to one another, they
may support, antagonize or contradict each other. Therefore,
an architect must balance forces to make the best possible
decisions. Figure 1 shows an extract from a decision forces
view, which was created as part of a pilot study conducted
to validate the design of the case studies reported below. In
the pilot study, the decision viewpoints from the previously
mentioned framework [3] and the decision forces viewpoint
were used to document architecture decisions made in a
non-academic distributed open source online banking and
accounting system for small and medium-sized companies.

The left part of the table shows the forces that were
considered when choosing among the decision alternatives
listed across the top of the table. Each force is classified by
one or more concerns (please refer to Section III-B for an
explanation of the relationship between forces and concerns).
The decision alternatives can be grouped into decision topics
(e.g. view technology, or data storage in Figure 1), if they were
taken into consideration as alternatives to solve a particular
problem. Within a decision topic, there can only be one
decision with a state equal to or higher than decided (please
refer to [3] for a description of all decision states). The
comment box in Figure 1 contains an example of a textual
description of a force-decision combination. The pluses and
minuses indicate a positive or negative impact of a force on a
decision alternative; an empty field means that a force is not
applicable or neutral; a question mark expresses uncertainty
(please refer to Section III-A for a more detailed description of

������

����	�

����

���	���� ���
�� �������	�� �
� �����

����

�� �� � �� � � � �

�� � � �

�� �� � � ��

� �� � � � � � �

�! �� � � � � � �

��" � � � � �

��� � �� ��

�#" �� � �

�#$ ��%%&�'����	��	(������� �� �� � � � �

�#� ���()&**��� � � � �

�#+ � � � �� ��

��

��,� ��

��,# �

��,"

��,$ � ��

��,� �

�#

�#,� � ��

�#,# �� � �

�#," �� � �

�$ � � � � �

�� �

�+ �� � �� �� �� � �

	
������������ ���������� �
��������

-��'���. -�)'�����. -�)'�����. -��'���. -�)'�����. -�)'�����. -��'���.

��)�������

��
��
��
�
�

�

�
�
��
�
��
�
�

����
�������
��
�
��������
������

��)'�*��� ���'���/)0

1��,	��)*��)�	�%�	-2	3,�) 4%�	5������

(��������	%&��,	*��%���	*������) �6�����5���

����5���	�7	����)������ ����5���

1����5���	�7	7&��)���'�	/!!,!80 ����5���

�&**���	������	��	�7	&)��) �'���5���

��'&���	/*��)����	����	*����'���0 ��'&���

�����	*���7��%	���*�����'� �����5���

9*���5���	�7	&)��	����7�'� :)�5���

;�����<	'�%%,

���<��	*����'��)

;�	�'��'�	'�)�) ������*%���	'�)�)

�����������

(���&)�	�6*����'� ������*%���	�%�

����	/����	����0 ������*%���	�%�

���	/��'���0 ������*%���	�%�

�1	/����0 ������*%���	�%�

�����	/����	����0 ������*%���	�%�

��	/����	����0 ������*%���	�%�

�������'	<��������	������*%��� ��%*�������))

�����	��)����) ��%*�������))

(%*����	
���)'�*�)<��) ��%*�������))

�����	
=&��� ��%*�������))

��&6)�����	�����5�� ������*%���	'�)�)

;��	5&)��))	'��'���� �&)��))	'��'����

��)�&�'�	&)���	��)����� ��)�&�'�	&��>����

;�	��)�&�'�)	������,	
1��	'��'&�����)	���	
*��7��%��	��	'����	

)��,

Figure 1. Excerpt from a decision forces view (see III-A for conventions used here)

the ratings). The architect evaluates each architectural decision
alternative in the context of the forces. As a result of the
evaluation, a force can have a positive, negative, currently
unknown, or neutral impact on the architect with respect to
a decision; it either attracts the decision maker towards a
specific decision alternative, or it repels the decision maker
from an alternative, or it has no effect. Figure 2 illustrates the
application of forces on an architect when choosing between
two database management systems. On the one hand, the
development team has a lot of experience using MySQL; this
force attracts the architect towards choosing MySQL. On the
other hand, the company wants to develop strategic knowledge
with PostgreSQL, which is also more reliable than MySQL
and turns out to scale better. In this particular case, after
balancing these forces, the architect would probably choose
PostgreSQL, provided that no other decision alternatives were
taken into consideration. In a more general case, an architect
would need to decide between more than two options.

A. Forces Viewpoint Specification

Table I lists the decision-related concerns1 framed by the
decision forces viewpoint. These decision-related concerns are
a subset of a larger set of concerns identified in our previous
work [3]. The codes in Table I were copied from [3] for
consistency.

Views of the decision forces viewpoint are dedicated to
supporting decision–force traceability. They can be used by
stakeholders interested in decision rationale, decisions relevant
for specific stakeholder concerns, addressed requirements,
conflicting forces and how these all relate to each other. The
main stakeholders for this viewpoint are architects, but also
reviewers and other stakeholders who need to comprehend
the choices made in the architecture. Table II shows the
stakeholders along with their main decision-related concerns
with respect to the forces viewpoint. Similarly to the decision-

1The term decision-related concern is used to refer to concerns pertaining to
decision documentation (as opposed to any other types of stakeholder concerns
which are simply termed concerns).

Figure 2. Application of forces on an architect

Figure 3. Metamodel of decision forces viewpoint

related concerns, the stakeholders were identified in our pre-
vious work.

Table I
CONCERNS OF THE DECISION FORCES VIEWPOINT

Code Concern
C3 What is the rationale for decision D?
C4 What concerns Ci does decision D pertain to?
C5 What forces Fj impact/influence decision D?
C6 What decisions Dk are influenced by force F ?
C7 What forces Fl have conflicting influences on decision D?
C23 What decisions Dp or decision sub-graphs SGq can be

reused in other projects?

Table II
TYPICAL STAKEHOLDERS OF THE DECISION FORCES VIEWPOINT AND

THEIR CONCERNS

Stakeholder Concerns
Architect C3, C4, C5, C6, C7
Reviewer C3, C4, C5, C6, C7
Requirements Engineer C4, C6, C7
New project member C3
Domain expert C23

The decision forces viewpoint consists of a single model
kind. Figure 3 depicts its metamodel, which presents the
conceptual elements for architecture models that adhere to
it. This model is part of a shared metamodel, which is used
by all viewpoints of the decision documentation framework.
Together with well-defined correspondence rules, the shared
metamodel ensures consistency among the views of different
viewpoints.

The elements in Figure 3 with a gray background map
to the corresponding elements in Figures 2 and 4 of
ISO/IEC/IEEE 42010. In the following, each of the elements
used in Figure 3 is briefly described.

An architecture decision pertains to one or more concerns.
Forces views show only the current state of each decision
(e.g. decided, or discarded [3]). While decisions can generally
have different types of relationships with each other, the forces
viewpoint only regards the is alternative for-relationship to
group multiple decision alternatives into a decision topic.

According to ISO/IEC/IEEE 42010, “Architecture rationale
captures explanation, justification or reasoning about archi-
tecture decisions that have been made.” [4]. In terms of the
forces viewpoint, the architecture rationale should balance all
relevant forces that influence a decision. Note that architecture
rationale is not described in forces views; it is documented
explicitly in decision detail views, which are part of the
decision framework. In the forces viewpoint’s model kind,
the association between Architecture Rationale and Influence
implies that the rationale description should consider the
relevant forces.

All forces are classified by one or more concerns. A stake-
holder could for instance be concerned about development
cost, while concrete forces classified by this concern could
be “not to use paid 3rd-party licenses”, or to “use available
hardware where possible”. The force not to use 3rd-party
licenses could, besides the development cost concern, be
classified by a legal concern (e.g how the software can be
distributed).

Apart from a textual qualification, the influences relationship
between decision force and architecture decision can take one
of the following values, estimated by the architect(s) of the
system:

++: A force strongly supports a specific decision alter-
native to be chosen. An example from Figure 1 is
the operability force, which strongly advocates the
choice of Swing/Java, because Swing can be used to
develop rich graphical user interfaces.

+: A force moderately supports an alternative.
blank: A force has a neutral influence on a decision alter-

native, or it is not applicable.
-: A force moderately opposes an alternative.
- -: A force strongly opposes an alternative to be chosen.

For instance, if the programming team has no experi-
ence in functional programming, then this would be
a strong argument against choosing Lisp or Haskell
as a programming language.

X: A decision alternative is prevented by a force. For
instance, a force could be not to use libraries dis-
tributed under an open source license. Such a force
would for instance prevent the use of Apache Lucene
as a search library. Nevertheless, it can make sense
to document such a decision alternative, because the
forces view could be used to negotiate constraints
or requirements with the customer, if its advantages
clearly outweigh the opposing forces.

?: It is currently unclear how the decision alternative is
impacted by a force. This rating should be temporary,
indicating that prototyping, or more research has to
be done to understand the impact better.

For space limitations, constraints and cross-viewpoint cor-
respondence rules relevant to this viewpoint were omitted in
this article.

B. Stakeholder concerns versus decision forces

In the context of ISO/IEC/IEEE 42010, the term concern
was chosen to include any interest that stakeholders consider
fundamental to the architecture of the system (including
the process of creating the architecture): “Concerns arise
throughout the life cycle from system needs and requirements,
from design choices and from implementation and operating
considerations.” [4]. The standard introduces stakeholders’
concerns as a means to drive the selection of architecture
viewpoints, i.e. different stakeholders for the architecture
description have different needs in terms of different kinds of
information. Therefore, concerns result in selecting appropri-
ate representations of the architecture. Forces, in contrast, do
not drive representational choices but architecture decisions.
The concept of a force is related to the concept of a concern,
in that all forces are classified by concerns (see Figure 3). If
a force could not be classified by at least one concern, this
means that it would not represent any interest of the relevant
stakeholders.

IV. THREE CASE STUDIES

To validate the usage of the decision forces viewpoint in
software projects, we conducted a multiple-case study with
senior students working on non-academic software projects.
A case study was preferable over surveys or experiments,
because the phenomenon (i.e. the influence of the forces view
documentation) had to be studied over a long period of time,
thus limiting the possibility for strict control of independent
variables [10]. Additionally, a multiple-case design is regarded
as more robust than single-case studies, because conclusions
from one case can be compared to other cases [11], which
increases external validity.

A. Study goal and research questions

Following Robson’s classification scheme [12], this
multiple-case study is exploratory in nature. The goal is to
explore the support provided by the decision forces viewpoint
to software architecture activities and the coverage of decision-
related concerns in software projects. In particular, the study
aims at answering the following two research questions:

RQ1: How does the forces viewpoint support the decision
making process?

RQ2: Which of the decision-related concerns mentioned in
Table I does the forces viewpoint support?

B. Study design and execution

1) Case descriptions: The study was conducted in the
context of two lecturing modules in the software engineering
study program at the Fontys University of Applied Sciences
in Venlo, the Netherlands. In total, we observed three student
groups working on different projects. Two of the projects were
conducted as part of a lecturing module, in which student
groups work on tasks for external, industrial customers2. The
third project was done as part of a lecturing module on the Java

2The customers have asked us to stay anonymous.

enterprise edition (JEE). In this module, the students were free
to make up their own software project, as long as it involved
at least one technology from the JEE specification set. In all
cases, the students worked on their own responsibility without
lecturers intervening in their decision making process. The
decision documentation was no integral part of the modules
and was not graded. One of the authors was involved in the
third case as a lecturer, while none of the authors was involved
in the former two cases. All projects were observed over a
period of seven weeks. In the following, the three projects are
briefly described:

PrjA: This project is a further development of a legacy doc-
umentation system used to generate different types of
documents based on templates and dynamically allo-
cated data. The software project was commissioned
by a medium-sized German software company. A
prominent user of the system is the Bavarian Depart-
ment of Justice. The primary task of the project group
was an architectural re-design to a service oriented
architecture, including the migration of the existing
functionality to services and the choice and usage of
an appropriate enterprise service bus technology.

PrjB: This software was ordered by a Dutch company
that acts as a broker between restaurant owners and
cooking personnel, specialized on catering, cooking
workshops, and interim executive chefs. The student
group had to develop a web application for person-
nel services in the gastronomy business, allowing
freelancing cooks to register and apply for jobs.
Job offers can be posted by restaurant owners, for
instance. The software had to be developed from
scratch.

PrjC: The third project was conducted as part of a lecturing
module on JEE. The students in this group started
an open source project called /notes (pronounced
Slashnotes) for managing, sharing and distributing
notes. The software offers three different clients that
can be used to access notes: a web application based
on JQuery, a Java desktop application (using Swing),
and a mobile client for Google’s Android operating
system. All architecture decisions had to be made
by the students. A short video showing the main
features of the application can be found on YouTube
(http://youtu.be/wW1Lgq2gZvg).

2) Subjects: The subjects of the study were students from
the last year of a four-year software engineering program of
study. All of the students had already gained some industrial
experience from a five-month internship; some of them had
additionally pursued part-time jobs in the software engineering
industry. During the course of their study, the students had fol-
lowed different courses on programming, object-oriented anal-
ysis and design, and software engineering process models (e.g.
RUP, Scrum, Iterative waterfall). To gather their experience
regarding programming, design, and software architecture; as
well as the time they had already spent in the industry, we

http://youtu.be/wW1Lgq2gZvg

Table III
PREVIOUS EXPERIENCE OF THE SUBJECTS

PrjA PrjB PrjC
No. stud. 6 5 4
Prog. exp. 75,33 (48,89) 49,2 (13,26) 59,5 (21,56)
Des. exp. 50,33 (28,63) 32,2 (3,03) 33,5 (8,54)
Arch. exp. 38,67 (4,84) 28,6 (9,48) 11,25 (7,97)
Ind. exp. 25,17 (36,21) 7 (2,83) 7,25 (6,18)

asked all participants to fill in a web-based questionnaire prior
to the study. Table III shows the number of students in each
group (No. stud.), as well as the average number of months of
experience that the students had as programmers (Prog. exp.),
as software designers (Des. exp.), with software architecture
(Arch. exp); and as software engineers in the industry, or
as payed freelancers. The numbers in parentheses show the
standard deviations. With the exception of one outlier in PrjA
regarding programming, design, and industrial experience, the
students’ previous experiences was comparable between the
groups, which renders them equivalent data sources. The
fact that the students were in the last semester before the
graduation project, and had some first experiences in the IT
industry, makes them suitable subjects for the population of
inexperienced software engineers at the beginning of their
professional careers.

Carver et al. provide a checklist for conducting empirical
studies with students [13]. This checklist was used to ensure
that the study had a pedagogical value for the participating
students and that the results are generalizable to a larger pop-
ulation (in this case the population of inexperienced software
engineers). In the following, we list all items of this checklist
together with a brief explanation on how the checklist item
was considered:

1) Ensure adequate integration of the study into the
course topics – In both lecturing modules, the students
had to make architecture decisions autonomously. The
decision forces view supports the decision making pro-
cess and provides decision-force traceability. Thus, it
integrated well into the course topics.

2) Integrate the study timeline with the course schedule
– The timeline for the study was explicitly planned
according to the start of the lecturing modules.

3) Reuse artifacts and tools where appropriate – The
students used a spreadsheet application for creating the
decision forces view. No special tool was introduced for
the purpose of decision documentation.

4) Write up a protocol and have it reviewed – A study
protocol was written before the study and reviewed by
the authors in multiple iterations.

5) Obtain subjects’ permission for their participation
in the study – Prior to the two courses, the students
were asked if they wanted to participate in the study.
They were ensured that no personal data would be made
available in the study report. All students expressed
their interest in the study. They were also given the

opportunity to withdraw from the study by sending an
email to the course lecturers.

6) Set subject expectations – The students were informed
about the effort, we estimated for the decision documen-
tation. Apart from that, we told them that we would give
them feedback about how to improve their individual
architecting processes after the study.

7) Document information about the experimental con-
text in detail – The context of the study is documented
in this article.

8) Implement policies for controlling/monitoring the
experimental variables – The relevant previous expe-
rience of the subjects, as well as the descriptions of the
projects they were involved in, are reported in this paper.
The data collection methods and data sources used to
monitor these variables are described in Section IV-B3.

9) Plan follow-up activities – At the end of the semester,
the students were informed about the study results. Each
project group also received individual feedback on their
architecting process.

10) Build or update a lab package All collected data was
stored in a digital study database (as proposed in [11]).
The database was used as a basis for the analysis.

3) Data collection: The data collected in this case study is
qualitative in nature. We applied triangulation of data-sources,
which is a well-accepted method to increase the precision of
studies that mainly collect qualitative data [10], [11], [14].
The different data sources that were triangulated, correspond
to different data collection methods, which are as follows:

Work artifacts: In the two lecturing modules, from which
we recruited our project groups, the students were
obliged to store all project related files in Subversion
repositories. The researchers were given read access
to these repositories, enabling them to track the
progress and the iterative refinement of the archi-
tectural design.

Focus groups: At the end of the seven weeks, we con-
ducted focus groups with each of the projects. Focus
groups are group interviews with a small number of
participants, in which a moderator asks questions to
concentrate the discussion on a predefined topic. In
contrast to individual interviews, focus groups allow
group members to build up on each others’ answers
leading to more profound information [15]. All focus
groups were audio recorded and transcribed.

Participant observation: During the seven weeks, the three
groups were regularly (at least weekly) visited during
their working sessions. The researchers took written
notes (i.e. field notes) about their observations, which
were afterwards scanned and stored in the study
database.

4) Pilot study: To fine-tune the design of the study, in
particular the data collection procedures and the research
questions, we performed a pilot study. In this pilot study,
we used the decision framework, and the forces viewpoint in

particular, to document the architecture decisions of a system
for online banking and accounting. One of the authors was
involved in the project as a developer. Figure 1 shows an
excerpt from the forces view created in this pilot.

The pilot study was particularly helpful for understanding
how the forces viewpoint can support the decision making
process. In addition, the results were used to develop the
question guide, which was employed during the focus groups
to ensure that no important topics of interest were forgotten.

C. Analysis procedure and results

As the data in our study database was qualitative to a large
extend, we chose to apply a grounded theory approach [16] to
analyze the data. While being used mainly in social sciences,
grounded theory has recently also gained more attention in
software engineering related research (see for instance [17],
[18]).

1) Analysis procedure: Grounded theory is inherently ex-
plorative in nature, as it promotes the analysis of data without
predetermined ideas about potential findings. Concepts emerge
slowly by constantly comparing indicators found in the data
to previously identified indicators. That way, an idea about a
finding (usually referred to as a theory) is either supported by
additional evidence, or it has to be rejected, if no additional
indicators can be found to carry it. In the following, the steps
we followed during the data analysis are briefly described.
Note that steps two to four are performed iteratively.

1) Convert data to PDF: The gathered data was exclu-
sively stored digitally. As a preparation for the data
analysis, we converted all files in the study database to
the PDF format to allow for a uniform coding procedure.

2) Coding: All PDFs were intensively studied. Indicators
for concepts related to decision views (in particular the
forces view) were coded (i.e. labelled) as brief state-
ments using PDF annotations. Please refer to Adolph
et al. [17] for an extensive explanation of the terms
indicator, code, concept, and category, which are central
concepts in grounded theory.

3) Identify concepts: During the coding procedure, con-
cepts emerge, which represent candidate patterns of
behavior, suggested by a set of indicators. The concepts
were registered and related to the codes supporting it.
The result after some iterations of analysis, was a set of
concepts describing how the three student groups used
and perceived the forces viewpoint in their projects.

4) Classify concepts into categories: Finally, in the last
step of the analysis, the concepts from the three groups
were compared to identify common categories of con-
cepts. A category is a concept on a higher level of
abstraction. As stated above, findings that were concor-
dantly made in more than one project group are more
reliable.

2) Analysis and interpretation: Table IV summarizes the
results of the qualitative analysis. The table maps the cate-
gories, identified in step 4 of the analysis procedure, to the
project groups, in which they were observed. Additionally,

the table shows decision-related concerns that are related to
some of the categories, as well as research questions (column
Res. Qu.), to which the categories contribute. In the following,
the results are interpreted in the context of the two research
questions. The interpretation focuses on categories that were
recognized in at least two of the projects; only regarding
suggestions for improvement, we discuss categories assigned
to single groups only.

RQ1: How does the forces viewpoint support the decision
making process? As Table IV shows, the data collected from
all three groups indicated that the forces views caused the
students to take the decision making process more seriously
than they would have done otherwise (Cat1). The fact that
decisions and forces had to be documented explicitly caused
the students to think more concretely about available decision
alternatives (Cat5), and the forces that influence the choice
between these alternatives. The students noticed that the view
prevented them from making decisions ad-hoc (Cat3, Cat19).
A comment in a focus group was “If you don’t have the view,
then you might also see alternatives, but if I have experience
in a solution then I will choose this one. But with the (forces)
view, you are forced to think about which one is really better.”
It is notable that all groups mentioned that the forces views
triggered them to consider quality attribute requirements in the
first place (Cat2). They had not thought of this in projects be-
fore (during their studies or in side jobs). Among all collected
work artifacts, the forces views were the only documents in
which quality attributes were mentioned. Considering quality
attributes in architectural design, however, is an important
best-practice that should be adopted by inexperienced software
engineers.

In general, the forces viewpoint was very well received by
the students. They found it especially helpful to maintain an
overview over decisions made and the factors that influence
the decisions (Cat18). The majority of members in all groups
explicitly stated that they will reuse the forces viewpoint in fu-
ture projects (Cat4)3. They acknowledged that it is a good way
of documenting architecture decisions (Cat6). This finding is
particularly important, because our experience from multiple
studies with students shows that they cannot be convinced
to document their decisions using decision templates (e.g.
from [2]). They usually perceive decision documentation as
a tedious task that does not have an immediate benefit. The
forces viewpoint, in contrast, is a documentation approach that
they quickly accepted; presumably because of its relative light-
weightiness and its immediate support for the decision making
process.

Although the students were predominantly positive about
the forces viewpoint, they also made suggestions for improve-
ment. ProjectC was concerned about the fact that the forces
viewpoint does not provide means to specify different weights
for forces (Cat14). In their project, some forces were clearly

3At the time this paper was written, the students were working on their final
bachelor projects in external companies. We repeatedly received questions and
suggestions about the forces viewpoint, which indicates that at least some
students indeed keep using decision views.

Table IV
RESULT OF THE QUALITATIVE ANALYSIS

Code Category PrjA PrjB PrjC Concerns Res. Qu.
Cat1 Required students to think more carefully about decisions. X X X RQ1
Cat2 Triggered students to consider quality attribute requirements. X X X RQ1
Cat3 Prevents ad-hoc decisions. X X X RQ1
Cat4 Forces viewpoint will be used in other projects. X X X RQ1
Cat5 Triggered students to identify more alternatives. X X RQ1
Cat6 Good way to document decisions. X X RQ1
Cat7 Creating the forces view took a lot of time. X RQ1
Cat8 Prevents inefficient discussions about decisions. X RQ1
Cat9 Created with reasonable effort. X RQ1
Cat10 Saved time in the end. X RQ1
Cat11 Support for rational decisions. X RQ1
Cat12 Forces view complements relationship view. X RQ1
Cat13 Useful for architects, designers, programmers, and new project members. X RQ1
Cat14 Support for weighing forces is missing. X RQ1
Cat15 Identifying all forces is a matter of experience. X RQ1
Cat16 Forces view and relationship view are simultaneously refined. X RQ1
Cat17 Proper tool support needed. X RQ1
Cat18 Maintain overview over architectural decisions, concerns, and forces. X X X C4,C5,C6 RQ1,RQ2
Cat19 Helpful to systematically compare decision alternatives in the context of

forces.
X X X C5,C6 RQ1,RQ2

Cat20 Help for estimating requirements coverage. X X C6 RQ1,RQ2
Cat21 Support for systematic trade-offs between forces. X C7 RQ1,RQ2
Cat22 Supports sharing architecture rationale. X X X C3, C23 RQ2

more important than other forces causing them to select an
architecture decision alternative that had a lower rating (i.e.
sums of pluses and minuses) than the other alternatives. Al-
though we had considered this aspect during the design of the
forces viewpoint, we chose not to include it in the viewpoint
specification to keep it simple. Systematically weighing forces
would have introduced additional complexity, which could
have deterred students from using the view properly. However,
the forces viewpoint can easily be customized by stakeholders
in order to introduce such weights in their projects. Apart
from this, it became evident that identifying all relevant forces
is a matter of experience (Cat15). Therefore, especially for
domain-specific forces, it can be helpful to collect typical
forces from different projects that can be used as a checklist
to ensure that no important forces are forgotten. Tool support
would also be appreciated, especially to ensure consistency
and to save work when creating the forces view in addition to
other views from the framework (Cat17).

RQ2: Which decision-related concerns does the forces
viewpoint support? To find out for which decision-related
concerns the students used the forces views, we analyzed
the concepts and categories and compared them to the list
of concerns in Table I. The results are shown in Table IV
(categories 18 to 22). Because the categories are conceptually
more abstract than single concerns, sometimes multiple con-
cerns are mapped to a single category. Note that the students
were not knowledgable about the concerns we had assigned
to the forces viewpoint in the specification. This would have
introduced a threat to the validity of our findings.

The concepts classified under category Cat18 have shown
that all three groups used the forces views to maintain an
overview over architectural decisions, concerns, and forces.

The students described that one column in the forces view
(see Figure 1) shows which concerns (Cat18, concern C4), and
which forces (Cat18, concern C5) are related to a decision.
They also understood that a row in the view shows decisions
influenced by a specific force (Cat18, concern C6). This
information was actively used by the students to make the
choice between multiple alternatives more systematic (Cat19,
concerns C5, C6).

All three groups saw value in the forces viewpoint with
respect to sharing architecture rationale (Cat22, concern C3).
In particular, they mentioned that usually individual members
of the groups were more knowledgeable about specific ar-
chitectural decision alternatives and their relation to forces
than others. The forces views helped them to spread this
knowledge better among the group members. Using their own
words, the student groups stated that studying the forces view
helped everybody to understand the why behind architecture
decisions, including the decisions primarily made by others.
Category Cat22 was also assigned to concern C23, because
the students saw the potential of the forces views to facilitate
the reusability of decisions in other projects: by providing the
rationale in terms of decisions addressing specific forces, the
decisions can be reused in cases where similar rationale would
make sense.

Two groups used the forces views to estimate the coverage
of some important requirements (Cat20). During the analysis
of the work artifacts, we could see that all groups had used
requirements as forces; only two of the groups, however,
had also actively used the forces view to check in how
far the decisions made were suitable to actually satisfy the
requirements. They understood that a row in the view shows
all decisions that need to be regarded when estimating the

coverage of a particular requirement (i.e. a force in the forces
view). For the same reasons, Cat20 confirms concern C6,
which is about identifying all decisions that were influenced
by a particular force.

Concern C7 (Which forces have conflicting influences on
a decision?) was only explicitly approved by one project.
Conflicting influences have to be regarded when making trade-
offs (Cat21). In forces views, conflicting impacts are indicated
by a decision that has positive rating for one force and negative
ratings for another force. Although this situation was observed
in the forces views of all three groups, only one of the
groups explicitly acknowledged the usefulness of forces views
for making trade-offs. We conjecture that the other groups
did not mention trade-offs, because they had not explicitly
discussed such situations. Only in PrjC, we observed that the
group actively and fully-aware discussed conflicting impacts
and ways to compensate resulting issues. This corresponds to
the team’s earlier discussed statement that they were missing
weights for forces (Cat14). Particularly when making trade-
offs, different weights of forces should be considered.

D. Threats to validity

In the following, we present potential threats to the validity
of our findings. In particular, we cover typical validity threats
in software engineering studies, as identified in [11] and [19].

1) Construct Validity: Construct validity is concerned with
the operational measures taken to analyze the phenomenon
under study. In this case, we used multiple sources of evidence
(i.e. work artifacts, field observation, and focus groups) to
study the use of the forces viewpoint in software projects.
Additionally, the use of a grounded theory approach ensures
that conclusions are rooted in the collected data and that no
important concepts are forgotten.

2) Internal Validity: Internal validity mainly has to be
considered in explanatory case studies [11], in which a cause-
effect relationship is going to be established. In exploratory
case studies, internal validity basically concerns making infer-
ences. In this case, we tried to address this potential threat by
involving different sources of data, including direct participant
observation and analysis of work artifacts. Logical deductions
are generally based on multiple sources of evidence and
aligned among at least two of the projects under study (we
did not make deductions from data coming from only one
project).

3) External Validity: External validity concerns the gen-
eralizability of the study’s findings to a larger population.
Because statistically representative samples can typically not
be achieved in cases studies, the emphasis is usually put on
analytical generalization, thus an explanation why the findings
are representative for other cases with common characteristics
[10]. Yin points out that external validity can be improved
by using replicated study-designs [11]. In this study report,
we present results that are based on findings made in three
different cases using identical study designs. This reduces
the influence of the concrete cases and of the individual
students in the different project groups. Therefore, we assume

that our findings are relevant at least for the population of
inexperienced software engineers at the beginning of their
professional careers. Although we did not find any indicators
raising legitimate doubts about the usefulness of the decision
forces viewpoint for experienced software architects as well,
additional industrial studies must be conducted to generalize
the study results to this larger population.

4) Reliability: The reliability of a study is concerned with
the minimization of errors and biases that stem from the
researchers who conducted the study. In this case, the moder-
ator of the focus groups could have influenced the students
towards giving specific answers. This threat was mitigated
by asking open questions like “How did the decision forces
view influence your decision making process?”. As follow-
up questions, the moderator asked the students to explain
their answers, or to go more into detail. To mitigate the risk
of suggestive questions and to make sure that all important
topics would be covered, we prepared a question guide [20]
in advance, which was used by the moderator during the focus
groups.

An additional potential threat to reliability could result from
students not staying true to the facts during the focus groups.
To mitigate this risk, we used data-source triangulation [21],
which allowed us to verify concepts using different types of
data. Additionally, as stated above, we prioritize results that
were concordantly found in at least two of the three case
studies.

V. RELATED WORK

The work presented in this paper is related to architecture
decision documentation in general, and architecture decision
views in particular. In our recent publication, we extensively
discussed related work in these two fields [3]. Therefore, in
the remainder of this section, we focus on related work with
respect to traceability between requirements (problems) and
design (solutions).

The decision forces viewpoint acknowledges the importance
of relating architecture decisions to the forces driving those
decisions. As such, the forces viewpoint is connected to
the research area of relating architecture and rationale. In
their recent book, Avgeriou et al. compiled 15 articles that
relate architecture and requirements [22], taking among others
traceability between architecture design, decision rational and
requirements into account. Tang et al. in the same publication,
provide a traceability metamodel for bridging the gap between
elements from the problem space (stakeholders, requirements,
and issues) and elements from the solution space (architectural
design, structure, components) using architecture decisions
and rationale as intermediaries. Other authors had proposed to
use reference models to support different types of requirements
traceability before (e.g. [23], [24]).

A slightly different approach to software architecture–
requirements traceability has recently been introduced by
Malavolta et al. [25]. Originating from the model-driven
architecture field, they suggest to use weaving models to
relate requirements models, architecture decision models, and

different types of architecture descriptions. In contrast to using
one shared metamodel, weaving models are non-invasive and
provide greater flexibility.

Tang et al. provide an architecture model for design trace-
ability and reasoning [26]. The model connects architecture
description elements (as defined in IEEE Std 1471-2000 [7])
to architecture decisions and architecture rationale, as first
class entities. These authors also implicitly acknowledge the
existence of decision forces, by introducing a concept they
call motivational reason. A motivational reason can be among
others a requirement, a goal, an assumption, or a constraint.

Despite this existing work on architecture rationale-design
traceability, to the best of our knowledge, no approach ex-
ists that systematically integrates this traceability in a soft-
ware architecture description following the conventions of
ISO/IEC/IEEE 42010. Additionally, and more importantly,
very few authors have recognized the importance of treating
the full scope of decision forces extending across the context
of the system and the environment in which it is developed,
as first-class entities in an architecture description. We argue
that the concept of decision forces, as introduced here, is a
valuable contribution to the field.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the decision forces viewpoint
as an extension to our framework for documenting architecture
decisions. The viewpoint was validated in a multiple-case
study, which has shown that the forces viewpoint is very well
received, while satisfying its related concerns. Additionally,
the forces viewpoint has demonstrated its ability to support
inexperienced software engineers during the decision making
process, by providing a structure that triggers them to consider
multiple architectural decision alternatives and systematically
compare them in the context of all important forces.

We are currently observing the use of the forces viewpoint
and other decision viewpoints from our framework in an
industrial study, in which we analyze the suitability of decision
views for problem and design space documentation. Apart
from that, we have used it as part of a decision-based archi-
tecture evaluation method, which we are currently developing.

Finally, as suggested by many users of our decision view-
points, we continue the development of a tool suite, which
efficiently supports architects in documenting views corre-
sponding to our viewpoints.

ACKNOWLEDGEMENTS

We would like to thank all participating students from
the software factories and the Java enterprise edition course
2011/2012. Two of the cases reported on in this paper are part
of a larger study designed and conducted together with Antony
Tang.

We would also like to thank Veli-Pekka Eloranta and Kai
Koskimies, with whom we initially discussed the concept of
decision forces in the context of decision-based architecture
evaluation.

REFERENCES

[1] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in Proceedings of the 2nd Groningen Workshop on
Software Variability, 2004, pp. 54–61.

[2] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Archi-
tecture,” IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[3] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions,” Journal of Systems and Software,
vol. 85, no. 4, pp. 795 – 820, 2012.

[4] ISO/IEC/IEEE 42010, Systems and software engineering — Architecture
description, ISO, December 2011.

[5] D. Perry and A. Wolf, “Foundations for the study of software architec-
ture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp.
40–52, 1992.

[6] P. Kruchten, “The 4+ 1 View Model of Architecture,” IEEE Software,
vol. 12, no. 6, pp. 42–50, 1995.

[7] IEEE Std 1471–2000, IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, IEEE, October 2000.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, Inc. New York, NY, USA, 1996.

[9] G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sandstrom,
J. Froberg, and J. Andersson, “Real world influences on software
architecture-interviews with industrial system experts,” in Fourth Work-
ing IEEE/IFIP Conference on Software Architecture, 2004. WICSA 2004.
IEEE, 2004, pp. 101–111.

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[11] R. K. Yin, Case Study Research: Design and Methods, Applied Social
Research Methods Series, Vol 5, 5th ed. Sage Inc., 2009.

[12] C. Robson, Real world research. Wiley, 2011.
[13] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for

integrating student empirical studies with research and teaching goals,”
Empirical Software Engineering, vol. 15, no. 1, pp. 35–59, 2010.

[14] R. Stake, The art of case study research. Sage Publications, Inc, 1995.
[15] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an

empirical tool in software engineering,” Guide to advanced empirical
software engineering, pp. 93–116, 2008.

[16] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Publishing Company, 1967.

[17] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[18] C. Urquhart, H. Lehmann, and M. Myers, “Putting the theory back into
grounded theory: guidelines for grounded theory studies in information
systems,” Information systems journal, vol. 20, no. 4, pp. 357–381, 2010.

[19] C. Wohlin, M. Hoest, P. Runeson, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Kluwer Academic Pub, 2000.

[20] N. Mack, C. Woodsong, K. MacQueen, G. Guest, and E. Namey,
Qualitative research methods: A data collector’s field guide. FLI, 2005.

[21] T. Lethbridge, S. Sim, and J. Singer, “Studying Software Engineers: Data
Collection Techniques for Software Field Studies,” Empirical Software
Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[22] P. Avgeriou, J. Grundy, J. Hall, P. Lago, and I. Mistrik, Relating Soft-
ware Requirements and Architectures. Springer Publishing Company,
Incorporated, 2011.

[23] O. Gotel and C. Finkelstein, “An analysis of the requirements traceability
problem,” in Proceedings of the First International Conference on
Requirements Engineering. IEEE, 1994, pp. 94–101.

[24] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 58–93, 2001.

[25] I. Malavolta, H. Muccini, and V. Smrithi Rekha, “Supporting archi-
tectural design decisions evolution through model driven engineering,”
Software Engineering for Resilient Systems, pp. 63–77, 2011.

[26] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918–934, 2007.

	Introduction
	A framework for architecture decisions
	ISO/IEC/IEEE 42010
	Four viewpoints for architecture decisions

	Decision forces viewpoint
	Forces Viewpoint Specification
	Stakeholder concerns versus decision forces

	Three case studies
	Study goal and research questions
	Study design and execution
	Case descriptions
	Subjects
	Data collection
	Pilot study

	Analysis procedure and results
	Analysis procedure
	Analysis and interpretation

	Threats to validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related work
	Conclusions and future work
	References

